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Abstract—Resistive Memory (ReRAM) has emerged as a
promising non-volatile memory technology that may replace
a significant portion of DRAM in future computer systems.
ReRAM has many advantages such as high density, low standby
power and good scalability. When adopting crossbar architec-
ture, ReRAM cell can achieve the smallest theoretical size in
fabrication, which is ideal for constructing dense memory with
large capacity. However, crossbar cell structure suffers from
a variety of reliability issues, which come from large voltage
drops on long wires. To ensure operation reliability, ReRAM
writes conservatively use the worst-case access latency of all
cells in ReRAM arrays, which leads to significant performance
degradation and dynamic energy waste.

In this paper, we study the correlation between the ReRAM cell
switching latency and the number of cells in low resistant state
(LRS) along bitlines, and propose to dynamically speed up write
operations based on bitline data patterns, i.e., the number of LRS
cells presented in bitlines. We leverage the intrinsic in-memory
processing capability of ReRAM crossbar and propose a low
overhead runtime profiler that effectively tracks the data patterns
in different bitlines. To achieve further write latency reduction,
we employ data compression and row address dependent memory
data layout to reduce the numbers of LRS cells on bitlines.
Moreover, we further present two optimization techniques, i.e.,
selective profiling and fine-grained profiling, to mitigate energy
overhead brought by bitline data patterns tracking. The experi-
mental results show that, on average, our design improves system
performance by 20.5% and 14.2%, and reduces memory dynamic
energy by 20.3% and 12.6%, compared to the baseline and the
state-of-the-art crossbar design, respectively.

Index Terms—Resistive Memory, Data Pattern, Crossbar Ar-
ray, Write Performance

I. INTRODUCTION

DUE to increasing demand for large capacity memory
in modern data-intensive applications, DRAM, the de

facto memory technology for constructing main memory, faces
severe high leakage power, short refreshing interval, low
density and yield issues [2]. Recent studies have proposed
to construct future large capacity main memory using emerg-
ing non-volatile memory (NVM) technologies, e.g., PCM
(Phase Change Memory) [3]–[7], STT-MRAM (Spin Transfer
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Torque Magnetic RAM) [8]–[11], and ReRAM (Resistive
Memory) [12]–[23]. These memory technologies have good
scalability, high density, almost zero low leakage power as
well as non-volatility characteristics.

Among different NVM technologies, ReRAM has become
one of the most promising candidates. ReRAM explores
the different resistance states of vertically stacked metal
and oxide layers to store information. Comparing to other
NVM technologies, ReRAM has better write performance than
PCM [24], [25] and better density and scalability than STT-
MRAM [9], [26], [27]. When adopting crossbar architecture,
ReRAM can achieve the smallest 4F2 planar cell size [13].

However, ReRAM crossbars suffer from large sneaky cur-
rents [13], [17], [28]–[30]. When performing ReRAM ac-
cesses, in particular, RESET operations, we cannot ignore the
leakage currents flowing through half-selected cells on the
selected wordline and bitlines. This is because crossbar arrays,
even after adopting diode selectors, cannot completely isolate
the to-be-written cells from other cells on the selected wordline
and bitlines. The large sneak currents not only reduce energy
efficiency, but also cause large IR drop on long wires [31],
leading to degraded performance and operation reliability.
With fast technology scaling, the IR drop issue tends to worsen
due to increased wire resistance and array sizes. To ensure
operation reliability, ReRAM write operations conservatively
use the worst-case access latency of all cells in ReRAM
arrays, which leads to significant performance degradation and
dynamic energy waste.

In this paper, we focus on mitigating the performance
degradation from IR drop. We summarize our contributions
as follows.

• We study the correlation between the RESET latency
of a ReRAM row and the number of the cells in low
resistance state (LRS) on selected bitlines. We propose to
dynamically speed up the RESET operations when there
are small numbers of LRS cells. We achieve further per-
formance improvement from exploiting data compression
and row address dependent data layout.

• We propose a novel profiling technique to dynamically
track the number of LRS cells along different bitlines
in the crossbar. By leveraging the in-memory processing
capability of ReRAM crossbar, we periodically detect the
number of LRS cells in bitlines using current aggregation,
an operation having fast speed (comparable to READ
operation) and low hardware and performance overheads.
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Fig. 1: The ReRAM basics: (a) the cell structure; (b) the three typical ReRAM array structures; and (c) the sneak current issue
in ReRAM crossbar array.

• We propose two profiling optimization techniques, i.e.,
selective profiling and fine-grained profiling, to mitigate
the energy overhead during profiling. They choose a
subset of mats or wordlines to profile so that fewer cells
are activated during a profiling operation.

• We evaluate the proposed design and compare it to
the state-of-the-art. The experimental results reveal that,
our design improves system performance by 20.5% and
14.2%, and reduces memory dynamic energy by 20.3%
and 12.6%, compared to the baseline and the state-of-the-
art crossbar designs, respectively.

In the rest of the paper, we introduce the ReRAM basics
and motivations in Section II. We elaborate the design de-
tails in Section III. In Section IV, we present two profiling
optimization techniques, including selective profiling and fine-
grained profiling. We present the experimental setup in Section
V and discuss the evaluation results in Section VI. We discuss
additional related work in Section VII and conclude the paper
in Section VIII.

II. BACKGROUND AND MOTIVATION

In this section, we discuss ReRAM basics and motivate our
design based on the observation of the strong correlation of
the RESET latency and the number of half-selected LRS (low
resistant state) cells.

A. ReRAM Basics

ReRAM is a promising non-volatile memory technology
that stores data using cell resistance. As shown in Figure 1a, a
ReRAM cell is composed of two metal layers on the top and
bottom, which are separated by metal oxide layer. Prior studies
have shown that a variety of metal oxide materials, such as
HfOx-based or TiOx-based materials, which have different
scalability, endurance, and energy consumption characteristics,
can be used to construct ReRAM cell arrays.

An ReRAM cell has two legal resistance states: a low resis-
tance state (LRS) to represent logic ‘1’ and a high resistance
state (HRS) to represent logical ‘0’. To program a ReRAM
cell (i.e., to switch resistance state from one to the other), a

proper voltage with required pulse width and magnitude has
to be applied across the cell. The RESET operation switches
the resistance state from LRS to HRS while the SET operation
switches from HRS to LRS.

B. ReRAM Crossbar Structure

Figure 1b presents three typical ReRAM array structures.
ReRAM array can be fabricated as a grid of 1T1R cells, which
is similar to conventional DRAM architecture where each cell
is accessed through a transistor. 1T1R cell array has large cell
size. ReRAM array can also be organized as a crossbar, which
achieves the smallest 4F2 planar cell size. ReRAM crossbar
has low fabrication cost and better scalability and thus is ideal
to be architected as DRAM replacement for building large
capacity memory

ReRAM crossbars, depending on if there is a diode access
selector, can be categorized as 0T1R or 1D1R structures.
Adopting selector helps to reduce sneak currents in the cross-
bar, which enables the fabrication of large cell arrays. In this
paper, we choose 1D1R crossbar as our baseline.

C. Motivation

We next study the sneak currents in the crossbar, and
analyze its impact on ReRAM RESET latency.

For discussion purpose, we assume a cacheline has 64B and
its 512 bits are saved in 64 mats (subarrays) with each subarray
containing 8 bits, the same as that in [13]. These mats spread
across 8 chips in one rank. To perform a RESET operation
in a ReRAM crossbar, the write driver selects one wordline
and up to eight bitlines. The selected wordline is applied with
VRESET voltage while each selected bitline is set to 0V. All other
bitlines and wordlines are applied with VRESET/2. Performing
a SET operation is similar but uses opposite current direction.
During the write operation, the cells in each subarray can be
categorized into three types, as shown in Figure 1c.

• Selected cells. They are the cells to be SET or RESET.
A selected cell stays on the selected wordline and one of
the selected bitlines as well. Ideally they are under the
maximal voltage stress, i.e., VRESET.
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(e) Row Address 255
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Fig. 2: Subfigures (a) to (h) show that the variations of RESET latency and voltage drop at different LRS cell percentages in
bitlines when accessing to different row address in ReRAM array. The Row Address 0 is the farthest row from driver, and
Row Address 511 is the nearest row to the driver.

• Half-selected cells. They are the cells on either the
selected wordline or the selected bitlines, but not both.
Ideally they are under half of the maximal voltage stress,
i.e., VRESET/2.

• Not-selected cells. They are the rest of the cells in the
crossbar. Ideally they have no voltage stress.

A cacheline write operation consists of two phases: a
RESET phase to write all 0s and a SET phase to write all
1s. We adopt DSGB to improve write performance [13] and
flip-n-write to only write modified cells [32]. Based on our
experiments as well as prior studies [13], [14], [17], SET oper-
ation takes much shorter time than RESET operation, making
it less sensitive to voltage stress degradation. Therefore, we
focus on long latency RESET operations in the paper.

1) IR Drop Issue: Studies have shown that ReRAM cross-
bar, even adopting diode selectors, has the currents flowing
through all cells — while the sneaky currents flowing through
not-selected cells are negligible, those flowing through half-
selected cells are not. The sneak currents introduce large
voltage drop along the wordline and bitlines, referred to as
IR drop in the crossbar. Large IR drop not only hurts the
energy efficiency, but also degrades the performances and
write reliability. A recent study has shown that, due to IR
drop, it takes longer time to RESET the ReRAM rows that
are far away from the write driver [17].

With fast technology scaling, future ReRAM chips are
expected to build upon large ReRAM mats, i.e., crossbars. Un-
fortunately, large crossbars have large wire resistance, which
worsens the IR drop issue.

2) The Correlation Between RESET Latency And Number
of LRS Cells: The relationship between cell RESET switching
time and IR drop on the target cell can be modeled using
Equation 1, as shown in recent studies [13], [33].

t× ekVd = C (1)

where t denotes cell RESET switching time; Vd denotes the
voltage drop across the targeted cell; C and k are experimen-

tal fittings constants extracted from prior studies. From the
equation, the cell switching time is highly sensitive, i.e., ex-
ponentially inverse correlation, to the voltage drop. A voltage
drop of 0.4V results in 10× RESET latency increase [33].

During RESET operation, half-selected cells do not change
state and exhibit as resistive devices. Given the same voltage
stress, a half-selected cell in LRS would have larger sneak
current than the one in HRS.

Given one selected wordline and one selected bitline, we
study the correlation among IR drop, the number of LRS
cells, and RESET latency. Figure 2 summarizes the correlation
for rows with different row addresses — Row 0 and Row
511 are the farthest and the closest rows to the write driver,
respectively. The y-axis shows the RESET latency (left) and
IR drop (right) while the x-axis shows the percentage of LRS
cells in the selected bitline1. We focus on bitline LRS cells
and assume the worst case for the wordline in this paper.
The impact from wordline tends to be smaller due to the
adoption of DSGB [13] and each subarray saving 8 bits from
one cacheline. We study the RESET latency in this paper, a
similar observation for READ was reported in [34]. In the
experiments, we adopted the Verilog-A model from [36] to
build and simulate a 512×512 Mat circuit model in HSPICE.
Table I summarizes the ReRAM crossbar model parameters.

From the figure, given a row, e.g. row 0, the more LRS
cells there are in the bitline, the larger IR drop the sneak
current brings, and the longer time the RESET operation
takes. Another observation is, the impact diminishes as the
row becomes closer to the write driver. For row 511, the
RESET latency is small and indistinguishable for the cases
with different percentages of LRS cells.

Prior studies [34] have revealed that, with a larger per-
centage of LRS cells on bitlines, the bitline discharging
time (developing time) increases during the read operation.

1Note that the term of in-memory data patterns used in this paper refers
to the percentage of LRS cells along bitlines, i.e., it is to characterize low
architectural level data layout, similar to that in prior work [34], [35].
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However, ReRAM read and SET operations are much faster
than ReRAM RESET operations — ReRAM read and SET
are 18ns and 10ns, respectively, as shown in Table IV, while
RESET ranges from 56.4ns to 202.4ns. In this paper, we focus
on optimizing ReRAM RESET operations. While the proposed
schemes are applicable to optimizing read and SET operations,
further study is necessary to evaluate the tradeoff between
limited performance improvement and increased hardware
complexity.

TABLE I: ReRAM Model Parameters

Metric Description Value
A Mat Size: A wordlines × A bitlines 512 × 512
n Number of bits to read/write 8
Iw Cell current at Vw 88µA
Rwire Wire resistance between adjacent cells 2.82Ω
Kr Nonlinearity of the selector 200
Vw Full selected voltage during write 3.0V
Vread Read voltage 1.5V
- Voltage biasing Scheme DSGB

III. DESIGN DETAILS

In this section, we present an overview of our scheme,
elaborate the details of our low-overhead runtime profiler and
then propose our compression based optimization for further
performance improvement. Finally, we illustrate the profiling
scheme with an example and estimate the overhead.

A. An Overview

Figure 3 presents an overview of our proposed scheme. We
assume that each cacheline has 64B or 512 bits. These bits are
saved in 64 mats spreading across 8 chips and each mat saves
8 bits from the cacheline, the same as previous work [13].
The 8 corresponding bitlines saving these 8 bits form a group.
Two cachelines are mapped to use the same 8-bitline group,
e..g. a0 and a1 use the first group, if their device addresses
are separated by K, here K is a multiple of 64 depending
on the number of mats, and line address interleaving. The
cachelines that share the first 8-bitline group are a0+i×K
(0≤i<512), which are referred to as the bitline-sharing-set
in the following discussion.

Worst-case bitline flag. We attach a 3-bit flag W-Flag to
each bitline-sharing-set. The flag records the worst case bitline
of all 512 bitlines shared by this set. In practice, we first find
the worst case bitline of each 8-bitline group in one mat, and
then find the worst case from 64 mats. Since one mat has 512
rows, the number of LRS cells on one bitline varies from 0 to
512. Instead of recording the accurate number, we divide the
range [0..511] into 8 subranges such that a 3-bit flag W-Flag
can denote its subrange, e.g., ‘000’ denotes subrange [0..63]
and ‘010’ denotes subrange [128..191].

In the next section, we exploit a runtime profiler that
periodically detects the worst case bitline in each mat as well
as the worst case for the whole bitline-sharing-set.

Tracking the worst-case. We attach a 6-bit counter W-Cnt
to each bitline-sharing-set. The counter is cleared each time
when the worst-case flag is updated, that is, either after
profiling update or due to W-Cnt overflow (as follows).

At runtime, we increment the counter for each memory
write that falls in the bitline-sharing-set. This is based on the
most conservative assumption that the write always introduce
one more LRS cell on the worst-case bitline among all
512 bitlines shared by bitline-sharing-set. A counter overflow
event increments W-Flag if W-Flag does not saturates. The
counter is then cleared. We will elaborate the use of W-Flag
and W-Cnt in following sections.

RESET latency optimization. To RESET a memory line,
we fetch its W-Flag and physical address to determine the
appropriate tWR time for the RESET operation. By looking up
a pre-tested RESET latency table stored in memory controller,
we can avoid always using the most conservative timing for
each write. For example, if row 0’s W-Flag is ‘010’, we
may use a tWR timing of 154.6ns instead of 202.4ns in the
baseline design. The quantitative values of tWR timing come
from our HSPICE circuit simulations, which will be discussed
in a later section.

We next elaborate the design details and illustrate the overall
workflow with examples.
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B. Low Overhead Runtime Profiling

We first describe our runtime profiling mechanism that faith-
fully tracks the number of LRS cells in each bitline. Clearly,
reading all memory lines from the mat for detection would
introduce prohibitive overhead. In this paper, we leverage the
current aggregation feature of ReRAM crossbar array [37],
which has been widely exploited for accelerating in-memory
computation [38]–[41]. Most existing memory profiling tech-
nique are for offline test. For example, March test [42] was
proposed for checking memory data integrity. The test cannot
be adopted at runtime as it can be as slow as 0.4ms per
row [42]–[44], which is much longer than regular ReRAM
read or write operation latency.

Figure 3 illustrates how the proposed profiling scheme
works. When there is a need to profile, the memory controller
sends out a profiling command with a 18-bit digial ID number
(which is enough to guarantee a unique ID for each bitline-
sharing-set in a 8GB memory system) for determining the
bitline-sharing-set in 64 mats. For each mat, all (512) word-
lines and the eight bitlines that belong to the bitline-sharing-set
are activated for performing profiling operation. This is similar
to dot-product operation in [38].

As shown in the figure, all wordlines are applied with Vread;
the selected eight bitlines are applied with 0V; and all other
bitlines are applied with Vread to depress sneaky currents. The
currents flow through the eight bitlines are highly correlated
to the number of LRS cells. The more LRS cells, the larger
current will be applied to ADC and comparator circuits that are
shared by all 64 8-bit read/write groups. We adopt the analog
to digital conversion circuitry developed for accelerating in-
memory computation. The bitline profiling currents are first
sent to analogy transmission muxes, which select the appro-
priate bitline-sharing-set to profile. The currents are then fed
to sample-and-hold (S/H) logic and the ADC unit. After the
analogy to digital conversion, the largest current (corresponds
to the worst-case bitline in this mat) is represented as a 3-bit
digital value.
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We divide the range [0..511] into eight subranges with
equal size (except the last one which has one more value).
As shown in Figure 4, we set up the mapping from bitline
currents to subranges before profiling. To account for runtime
voltage fluctuation and cell process variations, we allocate

0.1mA guard band for each subrange. That is, subrange ‘011’
corresponds to LRS cell percentage range [37.5%..50%), the
bitline profiling current is 1.03mA if there are 255 LRS cells
in one bitline. For high reliability, we tag a bitline as ‘011’
as if the profiling current is 0.93mA, that is, a line may be
tagged to have more LRS cells than it actually has.

The W-Cnt tracks the write to the bitline-sharing-set after
profiling. By default, the memory controller profiles the set
again after 64 writes so that we use 6-bit value to represent
W-Cnt. When W-Cnt overflows, we may either re-profile the
bitlines or increment W-Flag directly (before it overflows).
Given ReRAM writes not always introduce more LRS cells
to the worst-case bitline, it is beneficial to periodically profile
the set.

C. Determine the RESET timing

At runtime, we use the physical address and W-Flag
to determine the appropriate tWR timing for the RESET
operation. The reason that we also use the row address is
that, similar as that in [17], row RESET latency also depends
on its row index in one mat, i.e., the distance to the write
drivers — given the same percentage of LRS cells along the
bitlines, row 0 and 511 have the largest and smallest RESET
latencies, respectively. Therefore, we split the 512 rows in one
mat to eight address subranges, and use the worst case RESET
of this subgroup to write cachelines in each range, as shown
in Figure 5a.

Table II summarizes the write timing (tWR) of RESET
operation with different LRS cells along bitlines and different
row address category. The table is kept in the memory con-
troller, which is used in scheduling write operations to ReRAM
memory. The quantitative values of RESET operation timing
are from our simulations of a 512× 512 Mat circuit model in
HSPICE with parameters shown in Table I.

TABLE II: The tWR (ns) for RESET Operation

LRS Row Address Group
Ratio 0 1 2 3 4 5 6 7
111 202.4 197.7 184.9 165.9 142.3 117.2 92.4 69.1
110 202.4 197.7 184.9 165.9 142.3 117.2 92.4 69.1
101 199 194 181.8 162.9 139.8 115 90.5 68
100 189 184.3 172.6 154.8 132.9 109 85.8 65.5
011 173.8 169.7 158.5 142 121.9 99.8 80.2 63.4
010 154.6 150.9 140.9 126 107.9 90.3 74.7 60.9
001 132.9 129.3 120.9 107.9 93.9 81.3 69.2 58.8
000 109.7 106.9 99.7 90.8 81.8 73.2 64.5 56.4

TABLE III: Comparing the Profiling Overhead in One Bank

Comp. Params Spec Power/Energy
Area
(mm2)

ADC [45]

sampling
speed 1.28GS/s

24.48mW 0.012resolution 8-bit
number 8

S+H [39] number 8 × 64 5uW 0.00002

ReRAM
array

Mat number 1024
Reg. Prof.: 267.178pJ
Fine. Prof.: 168.332pJ
Read: 72.842pJ 2.078

Mat size 512 × 512 Leakage: 255.233mW

An example. We next use the example in Figure 5b to
illustrate how our proposed online profiling works and how to
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determine the timing of RESET operations based on W-Flag
and W-Cnt.

1) Online profiling operation: A profiling operation is
always triggered by a W-Cnt overflow. The default profiling
frequency is after every 64 writes to the same 6-bit W-Cnt
flag). For the example in Figure 5b, W-Cnt of bitline-sharing-
set with an ID 0x004ff overflows, which sends a profiling
command to all 64 corresponding mats (¶), each of which
contains 8 bitlines. It then performs the dot-product fashion
profiling within each mat (·) and produces a 3-bit counter that
maps the aggregated bitline current to a LRS cell subrange.
Each subrange indicates the worst-case LRS cell percentage
of the corresponding mat (¸). W-Flag of bitline-sharing-set
0x004ff is then updated with the maximum (the very worst-
case) of all 64 subrange values (¹). At last, W-Cnt is reset
to zero, which completes one online profiling operation.

2) Write operation with optimal RESET timing: With the
proposed profiling scheme, the timing of RESET operations
is determined by looking up an optimal RESET timing ta-
ble at runtime. For the example in Figure 5b, a RESET
operation to logic cacheline a7 is being served. Based on
its physical address, we first identify the row address group
number (º) and bitline-sharing-set ID (») (0x004cd in this
case), and fetch an up-to-date W-Flag (¼). We then find
the optimal RESET timing in Table II (½) and increment
W-Cnt. For the cells that needs to be RESET and fall in
bitline-sharing-set 0x004cd across 64 mats (a7<0:7> ...
a7<224:231> ... a7<504:511>), the RESET opera-
tions can finish within the optimal RESET timing (¾).

D. Reduce Bitline LRS Cells

Based on the observation that RESET latency depends on
the number of LRS cells along bitlines, it is important to
reduce the number of LRS cells in the crossbar. A simple
optimization is to save the cacheline in compressed format
[46] and fill in unused cells with 0s, i.e., reset them to HRS.
However, we observed a direct application of data compression
exhibits little help — the RESET latency is hardly changed.
This is because the RESET latency depends on the worst
case of all 512 bitlines. Assume every cacheline in a bitline-
sharing-set can be compressed to its half size and thus uses
256 cells. If every cacheline uses the first 256 bitlines, we
would have zero LRS in the other 256 bitlines. Unfortunately,
it is of little help because the worst case bitline may stay in
the first 256 bitlines.

We therefore propose a row-address biased data layout to
distribute extra 0s evenly to all bitlines. Given one bitline-
sharing-set a0+i×K (0≤i<512) where a0 is the cache-
line address that is mapped to the first row. When saving
a compressed cacheline in, e.g., row i, we shift the row
starting address to the right by i bits and then fill in the
unused cells in the row with 0s, as shown in Figure 6.

E. Overhead Analysis

Profiling overhead. The overhead comes mainly from
runtime profiling. After every 64 writes to one bitline-sharing-
set, the memory controller sends out one profiling command,

which activates 64 mats. In each mat, all rows and eight
bitlines are activated.

Table III summarizes the overheads for each ReRAM mem-
ory bank. We evaluated the power consumption and area by
HSPICE simulation and NVSim [47] at 32nm. A profiling
operation consumes about 3.7x read energy. For either read or
profiling, a huge portion of the power is consumed by internal
I/O and row/column decoders, thus the energy consumption is
not linear to the number of opened rows.

We followed recent studies [39], [45] to estimate the power
and area overheads of adopting ADC and sampling and
holding circuits. We used eight ADC units in each bank.
An ADC has 1.28GS/s sampling speed and introduces 50ns
profiling latency. In the experimental section, we will study
the performance and power efficiency with different numbers
of ADC units.

A profiling command return 3 bits from each activated mat.
As a comparison, a read operation returns 8 bits from each mat.
Therefore, the profiling results are returned to the memory
controller through data bus, without introducing additional
overhead other than a regular read.

Counters storage and RESET adjustment. We attach
one 3-bit W-Flag and 6-bit W-Cnt to each bitline-sharing-
set. A bitline-sharing-set contains 512 64B memory lines, or
32KB data. For a 8GB memory system, we need about 288KB
storage to hold all flags. In this paper, we keep all flags in the
memory controller for simplicity. In our future work, we will
keep a small buffer hold a subset of flag while keeping the
rest in the L2 cache. The RESET operation can be issued
in parallel to the table lookup. Due to long RESET latency,
the table lookup result can be returned at a later time to the
memory controller to determine when to terminate RESET
operation. We expect negligible performance overhead.

IV. PROFILING OPTIMIZATION

Even though online profiling helps to optimize RESET
latency and thus improve write performance, it introduces non-
negligible profiling overhead, including performance overhead
and energy consumption overhead. While the former is small
as we shall show in the experiments, the latter is much
larger due to the large energy consumption from ADC units.
We focus on optimizing profiling energy consumption in this
section.

A. Profiling Energy Overhead Analysis

To better illustrate the profiling energy overhead, we com-
pare the dynamic energy dissipation of ReRAM memory on
read, write and profiling operations, respectively, for a wide
range of benchmarks2, and summarize the results in Figure 7.
From the figure, we observe that the profiling energy consumes
an average of 13.4% of total dynamic energy, a non-trivial
portion of memory energy dissipation. Thus, it is important
to optimize online profiling to reduce the profiling energy
overhead.

2The experiment and simulation methodologies are discussed in Section 5
in detail.
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(b)

Fig. 5: (a) The rows with different addresses are mapped to 8 groups with different worst-case RESET latencies. (b) An
example of how our proposed online profiling works and how to determine the RESET timing.
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Fig. 7: The dynamic energy distribution when adopting the
proposed profiling technique.

We next propose two optimization schemes to mitigate the
overhead by reducing the number of cells to be activated at
profiling.

B. Selective Profiling

Figure 8 presents the basic idea of selective profiling. When
performing the N-th round profiling for a bitline-sharing-set

at runtime, we find out that the worst-case LRS-cell-per-bitline
number is 384 out of 512 cells, as shown by the red bar in
Figure 8a. However, it occurs only in one mat while the worst-
case numbers from other mats are much smaller. In the figure,
the green bars represent the numbers that are smaller than
256. For the mats corresponding to the green bars, the worst
scenario during the next profiling interval occurs when every
write operation increments the number of LRS cells in those
mats. Given the default profiling frequency is every 64 writes,
the worst scenario may introduce at most 64 more LRS cells,
i.e., the worst LRS-cell-per-bitline numbers for these mats
would still be smaller than 384 by the end of the next profiling
interval. Since the red bar is already 384 at the beginning of
the next profiling interval, it is safe to assume the worst case
for the green bar mats and skip profiling them in the next
profiling interval. However, for the mats corresponding to the
red bar and the gray bars in the figure, we still need to perform
the N+1-th round profiling.

To implement the proposed selective profiling scheme, we
group every two consecutive profiling rounds together and
make the i-th round profiling a regular profiling (i.e., the
same as that in the baseline profiling) while the (i+1)-th round
profiling a selective profiling (i.e., it is applied only to a subset
of mats). The regular profiling and selective profiling rounds
are performed alternately. In particular, after collecting the
3-bit flags from all 64 mats during a regular profiling, the
memory controller constructs a 64-bit profiling mask
with each bit representing whether the corresponding mat
needs to perform selective profiling for the next round. The
bits are initialized as 1s and updated based on the difference
between its 3-bit flag and W-Flag, the worst-case of all
mats. Assume the 3-bit flag from mat j is W-Flagj . If
W-Flagj+2 ≤ W-Flag, i.e., the worst LRS-cell-per-bitline
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Fig. 8: The scheme of proposed selective profiling.

number from one mat is at least 128 smaller than the worst
LRS-cell-per-bitline number of all mats, we set the corre-
sponding bit of the mat in the profiling mask to 0;
otherwise, the profiling mask bit is kept as 1. For the
next selective profiling round, we do not profile the mats
whose profiling mask bits are 0s.

Given selective profiling only skips the profiling operations
on a subset of mats, it does not degrade write performance
and reliability. Its benefits come from two folds: 1) it helps
to save the energy consumption on the ADC/S+H circuits and
the multi-row read operations on ReRAM arrays; 2) it shortens
the ADC latency at the sampling stage. This is because we
need to process fewer samples from mats for analogy-to-digital
conversion. In Section V.C, we study the performance and
energy efficiency improvements in our experiments.

C. Fine-grained Profiling

We next propose to reduce the profiling overhead as shown
in Figure 9. As aforementioned, we apply the VREAD voltage to
all wordlines in order to profile the ratio of LRS cells along
the bitlines within the bitline-sharing-set. These simultaneous
read operations contribute to the active energy consumption
of profiling overhead. Intuitively, by reducing the number of
wordlines that are opened to read, the profiling overhead can
be mitigated. Based on this observation, we split one 512×512
ReRAM mat into two 256×512 sub-mats. In Figure 9, they are
labeled as “A” and “B”, respectively. Each sub-mat consists
of 4 row address groups. We profile each sub-mat indepen-
dently and use two sets of W-Flag (2-bit W-Flag-A and
W-Flag-B) and W-Cnt (6-bit W-Cnt-A and W-Cnt-B)
counters to track the profiling results and to determine the
RESET timing. By keeping the same profiling frequency, i.e.,
each sub-mat needs to be re-profiled after accumulating 64
writes, we keep the same total number of profiling operations.
The profiling procedure, including detecting runtime bitline
data patterns and tracking the worst-case flag within one
bitline-sharing-set, is similar to the baseline profiling. The
only difference is that we profile the bitline data patterns for
each sub-mat separately. For the profiling, a 2-bit value is
enough to denote W-Flag-A and W-Flag-B the with the

same accuracy as the baseline profiling as the number bitline
LRS cells ranges from 0 to 256 in each sub-mat.

Determining the RESET timing is slightly different in the
fine-grained profiling design. As shown in Figure 9, we need to
combine the two LRS ratio numbers (from sub-mats A and B,
respectively) to determine the optimal timing. Since we adopt
conservative estimation, the combination may lead to over-
estimation, which slightly degrades the choice of the optimal
timing.

Comparing to the baseline profiling, the fine-grained profil-
ing scheme exhibits many advantages: (1) It activates a smaller
number of wordlines and thus reduces the dynamic energy
consumption. Our study shows that, when activating 256
wordlines during profiling, the fine-grained profiling consumes
63% energy of the one that activates all 512 wordlines (Ta-
ble III). (2) Instead of having 3-bit W-Flag values transferred
across the memory interface, we return 2-bit W-Flag-A and
W-Flag-B values, which may potentially save the memory
bandwidth. (3) The fine-grained profiling potentially enables
the finer tuning of RESET latencies.
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Fig. 9: The scheme of proposed fine-grained profiling.

V. EXPERIMENTAL SETUP

In this section, we first present the modeling and simulation
methodologies for evaluating the energy and performance of
ReRAM crossbars. Secondly, we present and characterize
all workloads used for evaluations based on their memory
access intensity. Finally, we briefly summarize all schemes
for experimental evaluations.
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A. Modeling and Simulation Methodologies
To evaluate the effectiveness of our proposed design, in

addition to the HSPICE modeling and simulation as introduced
in Section II.C and III.E, we used an in-house simulator to
simulate the proposed ReRAM access scheme and compare it
to the conventional and state-of-the-art designs. Table IV sum-
marizes the configuration for the baseline system. We plugged
the numbers from HSPICE and NVSim [47] simulations into
our architectural simulator to obtain the performance and
memory energy efficiency results. We used Pintool to generate
memory access traces from SPEC2006 [48], PARSEC [49] and
BioBench [50] benchmark suites.

B. Workload Characterization
Table V characterizes all benchmarks used in the exper-

iments. We carefully chose a subset of benchmarks with
different memory access WPKI and RPKI in order to study the
effectiveness of our design. The benchmarks are categorized
to three types: High, Medium and Low, respectively, according
to their memory access intensity.

C. Schemes for Evaluations
In the paper, we implemented and compared five differ-

ent schemes, including the conventional and state-of-the-art
ReRAM designs as follows:

• BL — This scheme is conventional ReRAM crossbar
design. The baseline adopts DSGB voltage driver for
latency reduction.

• RA — This scheme is the state-of-the-art design [17]
that adopts row address awareness technique to reduce
RESET latency.

• LRS — This scheme is the naive design that only adopts
data pattern profiling technique.

• CMP — This scheme is built on top of LRS. It adopts
data compression and shifts the rows starting bits based
on its row addressed within each mat.

• PROF — This scheme is built on top of CMP and includes
all enhancements in the paper. In particular, it adopts a
two dimensional tWR timing table (as shown in Table 2)
in determining RESET latency.

We also evaluated the effectiveness of following three
schemes with profiling optimization techniques:

• SEL_PROF — This scheme is built on top of PROF and
adopts the selective profiling scheme to save energy.

• FINE_PROF — This scheme is built on top of PROF
and adopts the fine-grained profiling scheme.

• SEL_FINE_PROF — This scheme adopts both profiling
optimizations to mitigate profiling overhead.

In system performance evaluation, we also compared the
proposed profiling techniques with IDEAL_PROF, the scheme
that assumes zero performance overhead.

VI. EVALUATION RESULTS AND ANALYSIS

In this section, we evaluate the performance and energy
efficiency for the proposed profiling scheme, and also quanti-
tatively show the effectiveness of two optimization techniques
in reducing the profiling overhead.

TABLE IV: System Configuration

Processor 4 cores; single issue in-order CMP;
4GHz

L1 I/D-cache Private; 16KB per core; 4-way;
2 cycle latency

L2 cache
Private; 1MB per core; 8-way;
64-byte block size;
10 cycle latency

Main memory

8GB; 1 channel; 2 ranks; 8 chips/rank,
2Gb x8 ReRAM Chip, 8 banks/chip;
1024 mats/bank;
scheduling reads first, issuing writes
when there is no read, issuing
write burst when W queue is full

ReRAM Timing
Read Latency 18ns@1.5V;
SET latency 10ns@3V;
RESET latency refers to Table II@-3V, 88µA

TABLE V: Benchmarks Characterization

Memory
Intensity Name Benchmark

Suite WPKI RPKI

High

ferret PARSEC 12.44 19.44
fasta dna BioBench 9.36 11.88
gemsfdtd SPEC2006 6.27 9.82
zeusmp SPEC2006 1.62 4.12

Medium
gcc SPEC2006 1.44 3.21
cactusADM SPEC2006 0.98 3.05
perlbench SPEC2006 0.60 0.60

Low
freqmine PARSEC 0.34 0.34
gobmk SPEC2006 0.14 0.20
fluidanimate PARSEC 0.14 0.36

A. Memory Access Latency

Figure 10 compares the average memory write latency
across different schemes, with the results normalized to BL.
On average, by applying the proposed techniques step by
step, we observed the significant write latency reductions by
19.8%, 37.2% and 63% for LRS, CMP and PROF, respectively.
Compared to RA, the proposed scheme PROF shows 53.5%
more reduction. In summary, it is effective to reduce RESET
latency by exploiting the number of LRS cells along bitlines.

Since the selective profiling does not change the RESET la-
tency, SEL_PROF has the same write latency as that in PROF.
Since the fine-grained profiling technique may over-estimate
the RESET latency, FINE_PROF and SEL_FINE_PROF ex-
hibit 7.1% write latency degradation over PROF. They still
achieve 60.3% write latency reduction over BL.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

ferret fasta gems zeus gcc cactus perl freq gobmk fluid mean

No
rm

al
ize

d 
M

em
ro

y 
W

rit
e 

La
te

nc
y

BL RA LRS CMP PROF SEL_PROF FINE_PROF SEL_FINE_PROF

Fig. 10: The comparison of memory write latency.

The reduction of RESET latency leads to the reduction of
memory read latency. Figure 11 summarizes the memory read
latencies in different schemes. The results are normalized to
BL. Similar to the write latency, the memory read latency is
reduced by 6.7%, 19.6% and 38.2% for LRS, CMP and PROF
respectively. Our proposed PROF scheme shows a 27.6% more
reduction over RA.
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When there are fewer mats profiled with selective pro-
filing, the average profiling latency is shortened and hence
the memory access latency on critical path is also reduced.
The write latency of SEL_PROF is reduced by up to 39.2%
from the baseline. With the fine-grained profiling techniques,
FINE_PROF and SEL_FINE_PROF perform slightly worse
than PROF. They achieve 36.1% and 37.4% read latency
reduction, respectively, over BL.
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Fig. 11: The comparison of memory read latency.

B. System Performance

We compared the performance when adopting different
schemes and summarized the CPI (cycles-per-instruction) re-
sults in Figure 12. The results are normalized to BL. From
the figure, the proposed profiling schemes achieve larger per-
formance improvements on write intensive benchmarks, e.g.,
ferret and fasta_dna. On average, PROF outperforms
BL by 32.4%, 16.5% and 5.2% on high, medium and low
memory intensity benchmarks, respectively. This is because
the proposed technique focuses on improving write perfor-
mance, which is sensitive to the intensity of write requests.
On average, PROF achieves 20.5% and 14.2% performance
improvements over BL and RA, respectively. Due to shortened
profiling operation latency, SEL_PROF improves the overall
performance by 1% over PROF, 21.2% performance improve-
ment over BL. FINE_PROF and SEL_FINE_PROF improve
CPI by 18.8% and 19.5%, respectively, over BL.

To illustrate the effectiveness and performance overhead
of the profiling techniques, we also compared the proposed
designs with IDEAL_PROF, the scheme adopting ideal pro-
filing, i.e., we assume the profiling operation has zero la-
tency and does not incur any performance overhead. The
experimental results showed that, on average, IDEAL_PROF
achieves 2% better performance than PROF, and 1.1% better
than SEL_PROF. For the group of high memory intensive
benchmarks, the average improvement is 3.3% over PROF.

From the results, the profiling introduces small performance
overhead. Further optimizations, e.g., hiding the profiling
latency by issuing profiling commands only during memory
bank idle time, are applicable but tend to achieve limited
performance improvement with increased hardware cost.

C. Effectiveness of Profiling Optimization

We next conducted experiments to study the effectiveness of
our proposed profiling optimization techniques. We reported
the normalized number of profiling operations in Figure 13 and
the normalized profiling energy consumption in Figure 14.
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Fig. 12: The performance comparison. The benchmarks are
categorized into High, Medium and Low memory intensity
types based on RPKI and WPKI.

Figure 13 compares the number of profiling operations
under different optimizations. The results are normalized to
PROF. On average, SEL_PROF i.e., the one adopting selec-
tive profiling, reduces 40.6% of profiling operations, while
SEL_FINE_PROF, i.e., the one adopting both optimizations,
reduces the number of profiling operations by 46.3%.

Figure 14 compares the profiling energy with different
optimizations. The experimental results show that both op-
timizations are effective in reducing dynamic energy caused
by profiling. By adopting the selective profiling technique,
SEL_PROF mitigates the energy consumption by reducing
the number of profiling operations, while FINE_PROF re-
duces the profiling energy from reading fewer wordlines.
From the figure, SEL_PROF saves the profiling energy by
40.6% while FINE_PROF consumes 93.4% of the profiling
energy in PROF. The scheme SEL_FINE_PROF combines
two optimizations and saves 49.9% of the profiling energy in
PROF.
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Fig. 13: The number of profiling operations performed with
optimized techniques on mats (Normalized to PROF).
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Fig. 14: The profiling energy with optimized techniques (Nor-
malized to PROF).

D. Memory Energy Efficiency

We next compared the dynamic memory energy consump-
tion and energy-delay product (EDP) for all schemes. The
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Fig. 15: The comparison of dynamic energy and Energy-Delay Product (EDP).

results are normalized to BL and summarized in Figure 15.
The dynamic energy consumption has three major sources:
read, write (including SET and RESET) energy and profil-
ing overheads from our proposed schemes. While the PROF
greatly improves RESET performance, it has no impact on
read and SET operations. In addition, our proposed schemes
introduce profiling overheads. For example, LRS consumes
3.9% more dynamic energy due to the profiling overhead.
However, SEL_PROF, FINE_PROF and SEL_FINE_PROF
with proposed optimization techniques can reduce the profiling
energy effectively as aforementioned.

In summary, PROF achieves 15.7% and 7.6% dynamic
energy reduction over BL and RA, respectively, while
SEL_PROF, FINE_PROF and SEL_FINE_PROF with op-
timization techniques further reduce the profiling over-
head and achieve 20.2%, 15.4% and 20.3% dynamic en-
ergy reduction over BL, though the fine-grained profiling
marginally increases write energy. SEL_PROF, FINE_PROF
and SEL_FINE_PROF also reduce more dynamic energy
than RA by 12.5%, 7.2% and 12.6%, respectively. The EDP
results show that our proposed design can effectively im-
prove the energy efficiency — PROF achieves 31.9% and
19.5% EDP improvements over BL and RA, respectively, while
SEL_PROF, FINE_PROF and SEL_FINE_PROF respec-
tively achieve 35.9%, 30.5% and 35.0% EDP improvements
over BL. In addition, the schemes SEL_PROF, FINE_PROF
and SEL_FINE_PROF also outperform RA in EDP improve-
ments by 24.2%, 17.8% and 23.2%, respectively.

E. Sensitivity Study

In this section, we finally compared the performance and
energy efficiency results for all proposed schemes with differ-
ent number of ADC units used in each bank as well as varied
ReRAM mat sizes, which are summarized in Figure 16.

Sensitivity to Number of ADC units. For the given
512 × 512 ReRAM crossbar, increasing the number of ADC
units can help reducing the profiling overhead. When doubling
the number of ADC units from 8 to 16, we summarized the
performance improvement and energy reduction results for
scheme PROF in Figure 16 (a). From the figure, while we
double the profiling area and power consumption overhead,
the performance improvements are trivial — only 1.1% im-
provement was observed. Similarly, SEL_PROF, FINE_PROF

and SEL_FINE_PROF cannot significantly benefit from more
ADC units.

Sensitivity to Mat Sizes. Figure 16 (b) reveals the sensitiv-
ity study results when we use different ReRAM crossbar mat
sizes — we compare 256× 256 and 512× 512.

For 256 × 256 ReRAM mat, the proposed scheme PROF
achieves smaller improvements due to smaller IR drop in the
array — it has 14.9% performance improvement and 4.6%
memory dynamic energy reduction over BL. For the default
512 × 512 ReRAM mat, the improvements are much larger.
In the figure, the proposed scheme PROF is slightly worse
(only 1.6%) than RA for 256× 256 mat size. This is because
the profiling latency and power consumption are independent
of mat size, which has a larger impact on smaller mats. The
schemes SEL_PROF, FINE_PROF and SEL_FINE_PROF
with profiling optimization techniques for 256× 256 mat size
reduce dynamic energy roughly to the same extent that they
do for 512 × 512 ReRAM mat. In summary, we expect our
proposed design can achieve larger improvements in future
ReRAM arrays that have increasing mat size due to fast
technology scaling.

VII. RELATED WORK

In this section, we first introduce prior studies on improving
performance of RESET operation in ReRAM crossbars, and
then present related work on intrinsic current accumulation
feature of ReRAM crossbars. Finally, we also report previous
works on analyzing stored data pattern in ReRAM crossbars.

A. Performance of RESET Operation

Since the RESET operation is one of the major performance
bottlenecks for ReRAM crossbars, there have been many
studies on reducing the RESET latency [13], [14], [17],
[20], [51]. Xu et al. [13] proposed the double sided ground
biasing (DSGB), multi-phase write operations, as well as a
compression-based encoding approach to reduce RESET la-
tency. Based on the observation that RESET latency correlates
to the physical distance between selected row and and the write
drivers, Zhang et al. [17] proposed to divide a crossbar array
into several logical regions with different access latency, in
order to exploit the discrepancy of RESET latency. Wang et
al. [51] presented the write latency depends on worst-case
data pattern in ReRAM crossbars, and proposed a voltage
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Fig. 16: The sensitivity of performance and memory dynamic energy consumption when using (a) different numbers of ADC
units; and (b) different ReRAM mat sizes.

bias scheme to optimize write performance. Zhang et al. [20]
proposed a ReRAM crossbar design with the double-sided
write driver to reduce RESET latency.

B. Current Accumulation Feature of ReRAM Crossbars

Recent studies exploited the natural current accumulation
feature of ReRAM crossbar architecture to implement dot-
product analogy calculations [38]–[41], [52]–[63]. In this
paper, we leverage this feature to profile and track the number
of LRS cells along each bitline.

C. Data Patterns in ReRAM Crossbars

Chang et al. [34] presented a similar observation for read
operation. Mustafa et al. [64] and Shin et al. [65] reported
that the detection margin for read operations depends on data
pattern in ReRAM arrays. Deng et al. [66] discussed the worst-
case data patterns for read and write operations in a ReRAM
crossbar array. Tang et al. [67] analyzed the impact of data
pattern on the sensing current in ReRAM crossbars. Xu et
al. [13] demonstrated that the RESET latency significantly
increases as the number of reset bits (switched from “1” to “0”)
increases in an ReRAM crossbar, and then exploited the data
pattern to reduce RESET latency. Liang et al. [35] analyzed
the voltage drop and data patterns in ReRAM crossbar arrays
without selectors.

VIII. CONCLUSION

In this paper, based on the observation that the RESET la-
tency strongly correlates to the number of cells in low resistant
states (LRS) along bit lines, we propose a novel profiling-
based ReRAM design, which can exploit the discrepancy
of RESET latency. We leverage the in-memory processing
capability of ReRAM to implement a low overhead runtime
profiler. By dynamically detecting the number of LRS cells, we
dynamically adjust RESET timing and achieve significant per-
formance and energy consumption improvements. In addition,
in order to mitigate the profiling overhead, two optimization
techniques — selective profiling and fine-grained profiling, are
presented. They both effectively achieve significant profiling
energy reduction by reducing the number of profiling opera-
tions and halving the number of being read wordlines during a

profiling operation respectively. The experimental results show
that, on average, our design improves system performance by
20.5% and 14.2%, and reduces memory dynamic energy by
15.7% and 7.6%, compared to the baseline and the state-of-
the-art crossbar design. With all proposed optimization tech-
niques, our design can further reduce dynamic energy by up
to 20.3% and 12.6% compared to the baseline crossbar design
and state-of-the-art ReRAM crossbar design, respectively.
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