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ABSTRACT
Random forest (RF) is a widely adopted machine learning method
for solving classification and regression problems. Training a ran-
dom forest demands a large number of relational comparison and
data movement operations, which take long time when using mod-
ern CPUs. Accelerating random forest training using either GPUs
or FPGAs achieves only modest speedups.

In this paper, we propose RFAcc, a ReRAM based accelerator,
to speed up random forest training process. We first devise a 3D
ReRAM based relational comparison engine, referred to as 3D-
VRComp, to enable parallel in-memory value comparison. We then
exploit 3D-VRComp to construct RFAcc to speedup random forest
training. Finally, we propose three optimizations, i.e., unary encod-
ing, pipeline design, and parallel tree node training, to fully utilize
the accelerator resources for maximized throughput improvement.
Our experimental results show that, on average, RFAcc achieves
8564 and 16850 times speedup and 6.6 × 104 and 2.6 × 105 times
energy saving over the training on a 4.2GHz Intel Core i7 CPU and
a NVIDIA GTX1080 GPU, respectively.
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1 INTRODUCTION
Random forest (RF) [2] is an ensemble machine learning method
that makes predictions based on the results of multiple independent
decision trees. RF, albeit a simple algorithm, performs very well
in solving classification and regression problems, which makes
random forest one of themost popularmethods inmachine learning,
data mining and artificial intelligence domains. For example, RF
is often the default learning method in Kaggle competitions [15].
As another example, a recent study of 179 classifiers [11] on UCI
database [21] and real world problems showed that RF is the best
family of classifiers and outperforms other popular classifiers such
as SVM [7], neural networks [18] and boost ensembles [24]. RF also
has the potential to go deeper. Zhou et al. [30] recently built Deep
Forest, a deep layered RF structure, that outperforms convolutional
neural networks on a number of problems that were the home court
of the latter.

However, it usually takes a long time to train a RF, e.g., Zhao
et al. reported that it took up to two days to train on their large data
sets using a 2.4GHz Intel Xeon CPU with 16 cores [29]. The training
phase is slow because it performs intensive memory accesses as
well as relational comparison operations. Training RF on CPUs
suffers from limited number of working threads and large branch
mis-prediction overhead. Training RF on GPUs suffers from the
intrinsic low performance of branch instructions on GPUs. Recent
studies showed that GPU-based trainings achieve less than ten
times speedup over CPU-based ones [12, 20, 25]. Because of the
limited memory bandwidth, accelerating RF training using FPGAs
achieves only modest speedup and may have to trade off inference
accuracy [4].

Recent studies widely adopt process-in-memory (PIM) to accel-
erate memory intensive algorithms — PIM avoids massive data
movement by performing computation inside the memory. Emerg-
ing non-volatile memories, such as ReRAM [1], PCM [3], DWM
[27] and STT-RAM [17], have been exploited for PIM acceleration.
However, existing designs support either arithmetic operations [6]
or match operations [14], which are not suitable for speeding up
RF training that is dominated by relational comparisons.

In this paper, we propose RFAcc, a 3D ReRAM based accelerator
for RF training. We summarize our contributions as follows.

• We propose 3D-VRComp, a 3D ReRAM based in-memory
relational comparison engine. 3D-VRComp compares a set
of values saved in the 3D ReRAM arrays with a given input,
and splits the value set to those that are bigger than the
input and those that are not. To the best of our knowledge,
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Figure 1: The basics of RF. (a) ARFwith two decision trees. The input is a four-feature vector (f 1, f 2, f 3, f 4)while the prediction
output is a label a, b, c or d . (b) Training a decision tree with eight samples. For each sample (xi ,yi ) (1≤i≤8), xi has four features,
i.e., f1, f2, f3, f4, while yi label can be a, b, c or d .

this is the first ReRAM based relational comparator in the
literature.

• We propose to construct RFAcc, a RF training accelerator, by
exploiting 3D-VRComp. We further propose three optimiza-
tions to minimize data movement and maximize throughput
improvement. (1) we adopt unary encoding to improve bit
level comparison parallelism; (2) we propose a pipeline de-
sign to improve comparison throughput; (3) we concurrently
train multiple nodes of a decision tree to fully utilizing the
RFAcc hardware resources.

• We compare RFAcc to the state-of-the-art CPU and GPU
training implementations. Our experimental results show
that, on average, RFAcc achieves 8564 and 16850 times speedup
and 6.6×104 and 2.6×105 times energy saving over the train-
ing on a 4.2GHz Intel Core i7 CPU and a NVIDIA GTX1080
GPU, respectively.

In the rest of the paper, we present the RF background and 3D
ReRAM basics in Section 2. We present the 3D-VRComp design
in Section 3. The full-fledged RF accelerator RFAcc is described in
Section 4. We elaborate our three level parallelisms in Section 5.
Section 6 and Section 7 discuss the experiment methodology and
the results, respectively. Finally we conclude the paper in Section 8.

2 PRELIMINARIES
2.1 Random Forest
2.1.1 Random Forest Classification. Random forest (RF) is an en-
semble machine learning method for classification, regression and
many other tasks. A random forest consists of multiple decision
trees while each tree is a weak learner. Each decision tree, with its
accuracy being barely above chance, requires only simple computa-
tion. By aggregating a number of decision trees into a forest and
averaging the outputs of all the trees as the final output, the overall
accuracy can be greatly improved.

Figure 1(a) illustrates a RF with two decision trees. It takes inputs
with numeric values for four features (f 1, f 2, f 3, f 4) and predicts
the output label being a, b, c or d . Each internal tree node (including
the root node) is marked as (fi ,vi ) indicating how to walk the
tree with a given input. For example, with input (f 1, f 2, f 3, f 4) =
(0.4, 0.4, 0.4, 0.5) and the root node of the first tree (f1, 0.3), we
walk down the right subtree as the input’s f1 feature value is bigger
than 0.3 (otherwise, we walk down the left subtree). The walking

continues until it reaches the leaf node. The latter is marked with a
probability vector (Pa , Pb , Pc , Pd ) for the four labels a, b, c , or d . In
the figure, the first tree predicts that the input has 0.1, 0.7, 0.1 and
0.1 probabilities of being label a, b, c or d , respectively.

Given that we have two trees, we average the prediction prob-
abilities from two leaf nodes and pick up the label with largest
probability. For the example, the final prediction probability vector
is (0.15, 0.65, 0.1, 0.1) such that the RF outputs the predicted label
being b.

2.1.2 Decision Tree Training. We next briefly discuss how to train
a decision tree and then build a RF.

To train a decision tree, we prepare a training set with n sam-
ples D = {(x1,y1), (x2,y2), ..., (xn ,yn )}. Each sample (xi ,yi ) is
composed of m features xi = {x

(1)
i ,x

(2)
i , ...,x

(m)

i } and one label
yi ∈ {1, 2, ...,K} (i.e., K classes). The features take numeric values
while the label is from a label set. In Figure 1(b), we have eight
samples and each xi has four features and the label can be a, b, c
or d .

Training a decision tree is to incrementally create tree nodes and
pick up the feature-value pair for each internal node of the tree.
When training a tree node, we try a subset of features with different
values for each feature and then pick up the best one from these
tries. For example, for the root node, we may choose (f1, 0.45) such
that the training set D is split to two subsets D1 and D2 as follows.

D1 = {(xi ,yi )|x
(f1)
i ≤ 0.45}

D2 = {(xi ,yi )|x
(f1)
i > 0.45}

(1)

After fixing the feature-value pair for an upper level tree node, we
continue training its subtree nodes, and stop if a subtree node’s
sample set has fewer than a threshold samples, or all the samples
in the tree node’s sample set have the same label. We construct the
probability vector based on the percentage of samples having each
label.

For the example in the figure, after training the root node,D1 has
four samples with different labels so that we may continue training
this subtree. However, D2 contains four samples and all samples
have the label a. We therefore stop training the right subtree. The
predict probability vector is computed as (1.0, 0, 0, 0) as all samples
have a. For the leaf node represented by subset D4, assume we
stop here as the set size is below a threshold. Its predict probability
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vector is computed as (0, 0, 0.5, 0.5) because half of the samples
have label c while the other half having d .

Fixing the feature-value pair. To determine the appropriate
feature-value pair for an internal tree node, we try many features
and try many values for each feature. We then pick up the one hav-
ing the highest homogeneity. CART is a commonly used algorithm
that uses Gini Impurity to determine the feature-value pair.

Given one feature-value pair, a node splits the sample set D that
reaches this node into subsets D1 and D2. CART tries all feature-
value pairs (i.e. all features fi (i = 1, 2, ...,m) and all possible values
vj for that feature) to split D and then computes the Gini Impurity
as follows.

Gini(D, fi ,vj ) =

|D1 |
|D |

(1 −
K∑
k=1

(
|D1k |
|D1 |

)2) +
|D2 |
|D |

(1 −
K∑
k=1

(
|D2k |
|D2 |

)2)
(2)

Where |D |, |D1 | and |D2 | are the sizes of the corresponding subsets;
|D1k | and |D2k | are the number of samples in D1 and D2 with label
y = k , respectively. CART selects the feature-value pair (fi ,vj )
that minimizes Equation 2 as the splitting rule for the node. By
rewriting Equation 2, it is equivalent to choosing the (fi ,vj ) pair
that maximizes the following.

1
|D1 |

K∑
k=1

(|D1k |)
2 +

1
|D2 |

K∑
k=1

(|D2k |)
2 (3)

From above discussion, trying one feature-value pair consists
of (i) splitting the sample set and (ii) computing the Gini Impurity.
The former demands O(|D|) comparisons while the latter demands
counting the sizes of K subsets and O(K) add / multiplication oper-
ations. Our design accelerates both comparison and set counting
with in-memory operations while using integrated ALU units to
accomplish the add/multiplication computation.

Ensemble of decision trees. Although a single decision tree
works poorly, studies showed that the overall accuracy can be
greatly improved if we aggregate a number of decision trees into
a forest and average the prediction probability vectors of all the
trees as the final output. RF exploits this observation and constructs
uncorrelated decision trees with two adjustments in training: (i)
when training a decision tree, it uses a randomly chosen subset of
samples rather than all samples; (ii) when training an internal tree
node, it uses a randomly chosen subset of features rather than all
features.

2.2 ReRAM and 3D ReRAM based TCAM
2.2.1 ReRAM and TCAM. ReRAM (Resistive Random Access Mem-
ory) is an emerging non-volatile memory technology. A ReRAM
cell is made of metal oxide material that is sandwiched between the
top and bottom electrodes, as shown in Figure 2(a). With different
injected currents, the cell may have oxygen vacancy filament con-
structed or destructed in the oxide material. The cell exhibits low
resistance RL and high resistances RH when having and not hav-
ing the filament, representing logic ‘1’ and ‘0’, respectively. Recent
studies have architected ReRAM cell arrays as either storage or
computing unit. ReRAM based storage often adopt 1T1R or 1D1R
cell structures, as shown in Figure 2(b).

top electrode

bottom 
electrode

metal oxide

oxygen ion
oxygen vacancy

(a) ReRAM device

diode

(b)ReRAM cell arrays

1T1R              1D1R

(c) ReRAM 2D TCAM 

b0 ...

...

bi
Match Line

WL0 WLN0

access
transistor

Figure 2: The ReRAM basics and 2D TCAMs.

Two ReRAM based computing units are studied in the literature.
One is to exploit the natural current accumulation in ReRAM arrays
to speedup dot-product computation [6]. The other is to construct
Ternary Content-Addressable Memory (TCAM) compute engines
[13]. We next briefly discuss ReRAM based TCAM design.

Figure 2(c) illustrates a TCAM array with each row saving n-
bit data. We program a pair of cells to complementary states to
represent each saved bit, i.e., the two cells are programmed to either
(RH , RL ) or (RL , RH ) to represent logic ‘1’ or ‘0’, respectively. Given
an n-bit input, we can compare it to all rows simultaneously. For
the i-th input bit (0≤i≤n-1), we set WLi and WLNi to the input and
its complementary, respectively. We use high and low voltages to
represent logic ‘1’ and ‘0’, respectively.

A match line is precharged to high voltage before comparison
and exhibits voltage drop only if at least one of the TCAM cells
along the corresponding rowmismatches the input bit. That is, since
WLi and WLNi opens one transistor for each cell pair, a mismatch
occurs if the ReRAM connected to the opened transistor is in RL
state, which discharges the current and brings down the voltage of
the match line. The match line remains at the high voltage if the
data saved in the corresponding row matches the input bit-by-bit.
So, the conventional TCAM can only check whether two data are
equal or not, while not able to distinguish which data is bigger or
smaller (i.e., the relational comparison).

2.2.2 3D ReRAM based TCAM. Recent advances in ReRAM pro-
posed 3D ReRAM structures, i.e., building ReRAM arrays along
the third dimension, to further increase bit density [5]. There are
two approaches. One is to stack planar cross-point structure layer
by layer while the other is to construct 3D Vertical ReRAM (3D-
VRRAM) structure. Since the former does not scale well and the
latter has low per-bit cost[9, 28], we adopt 3D-VRRAM in this paper.

Metal

Metal Cell2

Cell1

Metal Oxide RL

RH

RL

RH

0

0

1/2V

1/2V

Input 

 1 

Input 

 0 

Stored  1 

Stored  0 ML SA

SL

(a) (b) (c)

SA

SA

Cell

Cell

SL
ML

WL

WL

Metal

Electrode

WL
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Figure 3: 3D ReRAM based TCAM [19].
Figure 3(a) illustrates a 4-layer 3D-VRRAM architected for TCAM

operation [19]. The four cells in one column share one metal elec-
trode (see Figure 3(b)) such that they can be enabled when the
access transistor at the bottom (controlled by the sourceline) is en-
abled. For the data saved in the TCAM, each saved bit is represented
using two cells (in complementary states) from two adjacent layers
in the same column, as shown in Figure 3(c), the upper two cells
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Figure 4: The 3D-VRComp relational comparator.

store a ‘1’ and the lower two cells store a ‘0’. When we encode the
input using the wordlines (i.e., each input bit and its complementary
connect to two wordlines) and enable one sourceline, we compare
the cells from one vertical plane with the input. Each matchline
at the bottom indicates if the input matches the saved data in one
column.

3 3D-VRCOMP: 3D RERAM BASED
RELATIONAL COMPARATOR

While both 2D and 3D ReRAM based TCAM designs allow parallel
in-memory matching, they do not support relational comparisons
that we need in RF training. This motivates our design of a novel
in-memory relational comparator, i.e., the greater- or smaller-than
relationships can be quickly determined. In this section, we devise
a 3D-VRRAM based relational comparator engine, referred to as
3D-VRComp, as the critical building block in RFAcc.

To simplify the hardware design, we preprocess the feature val-
ues in the training set as follows. (1) We convert all values to non-
negative values, i.e., a feature’s value range is changed from [−a,+b]
to [0,a + b] with simple adjustment. (2) We represent the values in
32-bit fixed point numbers. This is sufficient for the benchmarks
that we tested. If a feature’s value range is too big, we may adopt
value normalization to represent the values in [0,1]. Given the
feature-value pair applied at an internal tree node is to split the
sample set, applying above two value transformations shall not
alter the training difficult or the final result. It is clear that we also
need to apply the same value transformations to the inputs before
the real task.

The basic strategy employed in 3D-VRComp is to compare bit-
by-bit. That is, when comparing two n-bit values An−1...A1A0 and
Bn−1...B1B0 (An−1 and Bn−1 are the most significant bits), we start
from comparingAn−1 and Bn−1 and proceed to compare the next bit
only ifAn−1=Bn−1; otherwise, the final result takes the comparison
result ofAn−1 and Bn−1. If the comparison stops atA0=B0, we have
A=B.

Figure 4 presents the structure of 3D-VRComp. Assume we are
to compare A with a set that contains B andC . All values have four
bits, e.g., A=A3A2A1A0. We save B and C in the cell array (only
use one vertical plane as in Figure 4(a)), have A as the input, and
output the matched items in the set. For each saved bit of B and C ,
3D-VRComp saves the original bit and its complementary in two
separate arrays (denoted as, e.g., Ci and C̄i in 4(a)).

Figure 4(b) shows the equivalent circuit for comparing A with
B. To compare the first bit, i.e., comparing A3 to B3, we activate
the sourceline for B, i.e., SL2=SL1=0 and SL0=1 in the example; we

charge all matchlines to high voltage, i.e., ML0= MLB0=1; In the
first cylce, we place the to-be-compared bit and its complementary
bit on one wordline, i.e.,WL3=A3,WLB3=Ā3, andWL2 =WLB2 =
WL1 =WLB1 =WL0 =WLB0 = Z (Z indicates disconnected input).
We then use RH and RL to represent logic ‘0’ and ‘1’ in ReRAM
cells; and use 0V and 1

2V to represent logic ’0’ and ’1’ of the input,
respectively.

Given that one comparison generates two matching results, e.g.,
ML0 andMLB0 hold the results of A3 and B3 comparison, we can
differentiate all three possibilities, i.e., A=B, A<B, or A>B. This is
impossible in the traditional one-matchline TCAM design — one
matchline can only differentiate two states (i.e., equal or not equal).
For both arrays, if wordline is 0V, matchline voltage drops only if the
cell has RL resistance. Therefore, we haveA3=B3 if both matchlines
hold high voltages after comparison; A3>B3 ifML0 holds the high
voltage whileMLB0 drops to the low voltage; and A3<B3 ifMLB0
holds the high voltage while ML0 drops to the low voltage. In
the subsequent cycles, we compare A2 to B2, A1 to B1 and A0 to
B0 one by one if the previous results are all equal. Because C use
different SA and matcher, the comparison betweenA andC can take
place simultaneously with comparison between A and B. Figure
4(c) shows the circuit of the matcher.

4 THE RFACC DESIGN
4.1 An Overview
In this section, we exploit 3D-VRComp to construct a full-fledged
RF accelerator (RFAcc) to speedup RF training. We first present an
overview and then elaborate each building component.
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Figure 5: The proposed RFAcc architecture.
To train a RF, the host CPU sends a configuration file to RFAcc

such that RFAcc trains the whole forest asynchronously and sends
the trained forest back to the host. The configuration file is written
by the programmer, which defines the parameters of the target
forest (e.g., the number of trees and the maximum depth of each
tree, etc.) and the characteristics of training data (e.g., the number
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of samples and the number of features, etc.). We assume the training
input has at most 220 samples1.

Figure 5 elaborates the RFAcc architecture. RFAcc is integrated
into the system as a memory module. A RFAcc chip is composed of
a Task Buffer, an ALU, the control logic and an array of tiles. RFAcc
trains one decision tree at a time but may train multiple nodes
of this tree simultaneously with our later optimization. The Task
Buffer records the information of tree nodes being and to be trained.
The ALU is to compute Gini Impurity to determine if a feature-value
pair is a good choice for a split. Each tile is composed of a number
of RCUs (Relational Compare Units) to compare the input with
randomly selected features, and an accumulator to accumulate the
partial results from RCUs. The control logic orchestrates the work
in different components.

4.2 The Building Blocks
4.2.1 RCU. A RCU (Relational Compare Unit) has a 3D-VRComp
to store the samples. Each 3D-VRComp adopts two 64×128×128
3D ReRAM arrays (for the original and complementary data, re-
spectively), i.e., it has 64 layers, 128 matchlines per array, and 128
source lines. One 3D-VRComp can save 128 samples, 256 features of
each sample, and 32 bits per feature. For example, we assume that
a training set has 512 samples and each sample has 512 features.
We use 8 RCUs to save the samples, as shown in Figure 6. Sample 0
to 127 expand across RCU0 and RCU1, sample 128 to 255 expand
across RCU2 to RCU3, etc. RCU2i store feature 0 to 255 and RCU2i+1
store feature 256 to 511, where 0 ≤ i ≤ 3.

A RCU has an Input Buffer storing three bit vectors member_-
bv, best_gini_bv, and current_split_bv. While one RCU saves
consecutive 128 samples, not all of them belong to the node being
trained. member_bv is the member bit vector denoting the samples
that are the ones in node’s sample set. Given a feature-value pair,
the 3D-VRComp splits the sample set into left subtree and right
subtree. current_split_mask records the member bit vector of
the left subtree for the feature-value pair being tried. The right
subtree’s member bit vector can be calculated by

¬current_split_mask ∧ member_bv

. best_gini_mask records the member bit vector of the left subtree
that calculates the best Gini Impurity.

The RCU also has a MAC array to count the labels in each sample
subset. We have discussed how the 3D-VRComp engine works in
Section 3. We next elaborate MAC details.

4.2.2 MAC unit. For the 128 samples saved in one RCU, the MAC
is a 2D ReRAM crossbar storing their corresponding labels. The
labels used in the training set are encoded as 1-hot vector values.
Each label is a 64-bit vector that has a unique element being 1 and
all others being 0s. For example, labels a, b, c and d are encoded as
(1,0,0,0,...), (0,1,0,0,...), (0,0,1,0,...) and (0,0,0,1,...), respectively. In this
paper, we set K=642, so the MAC crossbar array size is 128×64. We
feed the wordlines with the subtree’s member bit vector produced
1We assume one RFAcc can load all samples and their features. For large training sets,
we priority loading samples so that we may load only a subset of features per sample.
We leave it as our future work to develop dynamic swapping schemes to address this
issue.
2This is sufficient for our training set. We need more counting rounds if there are more
label classes.
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Figure 6: Data mapping in RCUs.

by the 3D-VRComp as input. The accumulated current on bitlines
are the output indicating the label count. For the example in Figure
7, after a split, the subtree has 12 samples with label a, 5 samples
with label b, 9 samples with label c , etc. We use 32 ADC units to
finish the counting in 2 rounds.
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Figure 7: MAC.

4.2.3 Tile. Multiple RCUs are grouped in a tile. To ease the burden
of ALU and NOC overhead, after the RCUs splits a node, the label
count are accumulated in the accumulator. So, only one accumulated
label count is sent from each tile to the global ALU through the 2D
mesh NOC.

Table 1: Task Buffer Fields

Field Name Size Description
node_ID 4B ID of node starting from 1

input_group_bv 4KB Each bit indicates a group of 128 samples
mask_bv 512KB Sample subset of this node (one bit per sample)

RCU_request_bv 4KB Requested RCUs (one bit per RCU)
feature_seed 4B Seed for randomly selected features

best_feature_value 10B Feature (16b) and value(32b) that achieves the
best Gini(32b)

working_feature_value 6B Currently tried feature (16b) and value(32b)

4.2.4 Task buffer. A task buffer is a 64-entry SRAM buffer with
each entry containing the fields shown in Table 1.

The first three fields describe the node characteristics. The ID of
the root node is set to ‘1’. Since a decision tree is a binary tree, the
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IDs of the two subtree nodes of an internal node with ID x are set
to 2x and 2x +1, respectively. We assign each sample in the training
input set with its appearing order number (starting from 0). Since a
node during training contains only a subset of all samples, we use
two-level bit vectors to denote its members. For every 128 samples,
we use one bit in input_group_bv to indicate if any of these 128
samples appears in the node’s sample set. For each non-zero bit j,
mask_bv saves a 128-bit bit vector at offset j×128 to identify which
samples in this group are in the node’s sample set. Clearly, mask_bv
reserves storage for the worst case while we may use only a small
portion at runtime.

The next two fields describes the training feature selection. Since
training a tree node needs to randomly try

√
F features (F is the total

number of all features), we record the random seed to generate these
features in feature_seed. Since each RCU can hold 256 features
of a sample, we need more RCUs to save the features from each
sample if there are more than 256 features. The RCU_request_bv
records which RCUs may be used to train the node. Still take the 8
RCUs in Figure 6 as an example. Training one node needs to use
√
F = 22 features. If all the 22 features are from the first half, RCU_-

request_bv=‘01010101’; if all from the second half, RCU_request_-
bv=‘10101010’; otherwise, RCU_request_bv=‘11111111’.

The last two fields describes the training progress. working_-
feature_value saves the current feature-value pair being tried.
best_feature_value saves the best Gini Impurity value and its
corresponding feature-value pair during training.

4.3 Training A Random Forest
We next use an example to elaborate how RFAcc trains a RF (Figure
8). Assuming we have a training set with 1280 samples and each
sample has 1024 features. We first load these samples to RFAcc
with each sample expands across four RCUs, that is, samples 0 to
127 occupy RCU0 to RCU3 while samples 128 to 255 occupy RCU4
to RCU7, etc. RCU0 and RCU4 saves the first 256 features of their
corresponding samples. 40 RCUs in one tile are enough to hold all
the samples.

(1) Task buffer entry initialization. To train a decision tree, we
generate a root node in the task buffer with node_ID=1, input_-
group_bv =0x0...03FF (i.e., the root node contains all the 10 sample
groups), and mask_bv being 0xFF...FF (1280 1s). We continuously
process the entries in the task buffer until the buffer is empty. We
reserve two empty entries before processing one entry.

Training a node needs to try
√

1024=32 random features. As-
sume the seed for the random generated features is 13, and these
features are features 0 to 15, and 256 to 271, we set RCU_request_-
bv=0x3333333333 indicating we use RCU4i and RCU4i+1 (0≤i≤9).

(2) Select RCUs. According to the RCU_request_bv field of this
node in task buffer, RCU4i and RCU4i+1 (marked by shade in Figure
8) are selected to perform the task.

(3) Initialize RCUs. The involved RCUs initialize their member_bv
registers according to input_group_bv and mask_bv in task buffer,
load member bit vectors from mask_bv with offset 128×i into their
member_bv registers. For example, because RCU0 stores the first
128 samples, it checks the first bit in input_group_bv, if the first
bit is 1, then load the first 128 continuous bits from mask_bv to its
member_bv, otherwise initialize its member_bv to 0. Since it is the

root node which needs to split all the samples, the member_bv is
initialized to 0xF...FF (128 1s).

(4) Comparison.We then try all the chosen features and try all
value choices for each feature using the relational comparison ca-
pability of 3D-VRComp. For each split, a 128-bit current_split_-
mask is generated, indicating which samples are split into the left
child node. In the example, we assume the current_split_mask
is 0xA...57.

(5) Counting labels in each subtree. We next generate the sub-
tree nodes’ member bit vectors. ‘member_bv ∧ current_split_-
bv’ produces the member_bv for its left subtree; and ‘member_bv
∧ ¬current_split_bv’ produces the member_bv for its right sub-
tree. We first send the left subtree’s member bit vector to the MAC
unit. The latter exploits the current-accumulation characteristic
of ReRAM [26] to measure the current of each bitline. The result
indicates the number of corresponding labels in left subtree node’s
sample set. The example in Figure 8 shows the left subtree has 12
samples with label a, 5 samples with label b, etc. We repeat this
process by using the right subtree’s member bit vector to get the
right subtree’s label count.

(6) Computing Gini. The two label count vectors are then sent to
the global ALU to compute the Gini Impurity according to Equation
3.

(7) Initializing the subtree nodes. If it is better than the best of pre-
vious tries. We record the Gini Impurity and the feature-pair in the
task buffer. In each involved RCU, we overwrite the best_gini_bv
with current_split_bv. After training one node, we update the
two subtree nodes in the reserved task buffer entries. The node_-
IDs are 2 and 3. We then update the mask_bv for the 1s in the
current node’s input_group_bv and copy best_gini_bv. For one
subtree node, if the RCU’s best_gini_bv (or its complementary
AND mask_bv) are all 0s, we clear the corresponding bit in subtree
node’s input_group_bv.

We then send the trained feature-value pair for node 1 back to
the host CPU and clear the entry in the task buffer, which concludes
the training of one tree node.

Since we need to reserve two entries in the task buffer before
splitting a node, and after the splitting only one entry is released. It
is possible that the task buffer is exhausted. In such case, we offload
the whole task buffer to host memory, leaving only the deepest
node in task buffer. The following training process only splits the
subtree starting from this node.

When preparing the subtree nodes in the task buffer, we skip
filling the node if it has too few members, or all labels are the same.

5 OPTIMIZATIONS
5.1 Bit Encoding
RFAcc speeds up RF training by enabling multiple sample compar-
isons simultaneously. On the one hand, one sample comparison is
still slow as it is done bit-by-bit; on the other hand, many RCUs
are idle if the number of samples and the number of features per
sample are not big.

Figure 9 illustrates why bit-by-bit comparison is necessary for
comparing two binary values. In particular, comparing ‘0011’ and
‘0101’ generate conflicting results at two bit positions, discharging
both ML and MLB. The red arrows in the figure show the paths that
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Figure 9: The basic RFAcc demands sequential comparison.

discharge current on ML and MLB. This comparison result indicates
unknown result. Therefore, parallel comparison is not supported
in the basic RFAcc.

In this section, we adopt bit encoding to improve comparison
parallelism—we encode feature values using unary codes so that we
can compare multiple bits from one sample simultaneously. A 4-bit
generalized unary code [16] represents every two consecutive bits
in the original value — bit combinations 00/01/10/11 are converted
to 0000/0001/0011/ 0111, respectively. For example, the 4-unary
code for binary input ‘0110’ is ‘0001 0011’.

Adopting unary code enables parallel comparison as the compar-
ison of non-equal bit positions are always consistent. For example,
when comparing ‘0001’ and ‘0111’, we have equal comparison re-
sults for the first and the fourth bit positions, and the same ‘0<1’
non-equal result for the second and the third bit positions. Given
equal comparison does not discharge matchline, we can get the
consistent comparison result if the two values are not the same.

Adopting unary encoding reduces area efficiency as we need to
use 64 bits to encode the original 32 bit value. However, it improves
comparison performance as we finish the comparison of two bits in
one comparison step. In general, for 32-bit value comparison that
finishes in 32 steps, adopting 2M -unary code demands 2M × 32

M bits
and finish the comparison in 32

M steps.

5.2 Pipeline
Training a tree node needs to try a large number of feature-value
combinations such that it often takes a long time to finish. A careful
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Figure 10: Pipeline.

study of each try reveals that it includes the following steps. (1)
given a feature-value pair, the 3D-VRComp splits the sample set into
two subsets, producing the left subtree’s member bit vector; (2) the
left subtree’s member bit vector are used as input to drive the MAC
to count left subtree’s labels, then similarly, the MAC count the
right subtree’s labels; (3) the label counts produced by all the RCUs
are accumulated in the tile and sent to the global ALU to compute
the Gini Impurity; (4) if the Gini Impurity is better than the best of
all previous tries, saving the current split result in each involved
RCU. Given that these four steps use different physical functional
units, we pipeline their execution for maximized throughput. If a
feature-value pair does not give a better split, stage (4) could be
skipped but we still keep its cycles in the pipeline to simplify the
control overhead.

The cycle time is determined by the slowest stage, i.e. stage
(1) which involves current sharing through ReRAM cells. We set
the cycle time to 12ns according to [19]. The length of stage (1) is
determined by the encoding scheme. As shown in Figure 10(a), if no
encoding is used, stage (1) requires 32 cycles to compare the bits in
serial. The remaining stages can be hidden in the next comparison.
So after set-up phase of the pipeline, each try needs 32 cycles. If
a 16-unary encoding is used, the comparison only needs 8 cycles,
however, the bottleneck is still stage (1), as shown in Figure 10(b).
More aggressively, if there is enough space we can use 64-unary
encoding, the length of stage (1) is the same as other stages, every
unit can keep busy to produce the highest throughput, as shown
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in Figure 10(c). To support encoding in pipeline, the configuration
need to be determined offline and loaded into the control logic to
drive the finite state machine.

5.3 Node Level Parallelism
Section 4.2 presents the sequential training, that is, the whole RFAcc
trains one tree node even if it only uses a subset of all RCUs. To
further improve training performance, we propose to enable node
level parallel training.

We use a global bit vector free_RCU_bv to track free RCUs at
runtime. Training a tree node needs to reserve all its needed RCUs.
We derive the requested RCUs from input_group_bv and RCU_-
request_bv, reserve these RCUs if they are idle, and then start
training. Another node may start training only if it can reserve all
its needed RCUs; otherwise, it has towait. The node level parallelism
tends to be limited at the beginning and increases as we train the
nodes towards the leaves. Training a node close to the leave require
few RCUs as the node’s sample set tends to be small. We set to train
at most 16 nodes at the same time. Since the accumulator is shared
by all the RCUs in a tile, and the global ALU is shared by all the tiles,
we increase the number of accumulators and ALUs accordingly to
support the parallel training.

In this paper, we schedule the training of the nodes recorded in
the task buffer sequentially and pause the parallel training if the
next node cannot reserve all its requested RCUs. A more aggressive
approach is to dynamically search the ready nodes in the task
buffers and train out of the order. We will evaluate its complexity
and performance tradeoff in our future work.

6 METHODOLOGY
We evaluated the effectiveness of our proposed RFAcc accelerator
by comparing it with publicly available random forest training im-
plementations on both CPU and GPU. For CPU implementation, we
used RandomForestClassifier from scikit-learn [23] on an Intel Core
i7-7700K processor. For GPU implementation, we used CudaTree
[20] on a GTX1080 GPU. We used RAPL [8] and Nvidia-SMI [22]
to measure CPU and GPU power consumption, respectively.

To model RFAcc, we first used scikit-learn to generate the traces
of the trained RF, then we feed the traces into our cycle-accurate
RFAcc simulator to get the performance and energy statistics. We
used Design Compiler with 32nm technology node to generate
latency and power parameters and estimate the area for logic units.
The parameters for SRAM buffers and 3D-VRRAM arrays are gen-
erated using NVSIM [10]. The specification details are listed in
Table 2. We set 2 as the minimum number of samples to stop node
split. There is no limitation for the depth of the trees in RF.

Benchmarks.We tested ten benchmarks from publicly available
datasets, their characteristics are list in Table 3. Most of the datasets
are available in UCI [21] database, which has been widely used
by researchers in machine learning community. In addition, we
also used two image datasets to test RFAcc with large number of
features — mnist is a hand-written digit dataset; orl contains face
images of 40 persons, each face is a 92×112 gray scale image. For
the image datasets, each raw pixel is treated as a feature in RF. The
benchmarks also have large number of samples. For instance, poker
covtype have 100M and 58M samples, respectively.

Table 2: Hardware Specification

CPU
(Core i7-7700K)

Base Frequency 4.20 GHz
Cores/Threads 4/8
Process 14 nm
TDP 91 W
Cache 8 MB SmartCache
System Memory 16 GB DRAM, DDR4

GPU
(GTX1080)

Frequency 1733 MHz
Cuda Cores 2560
Process 16 nm
TDP 180 W
Cache 2MB shared L2
Graphic Memory 8 GB DRAM, GDDR5X

RFAcc Task Buffer:32MB, RCU:8GB, MAC:32MB,
RH :10MΩ, RL :100KΩ, tRead :11.2ns, tWrite :25.2ns,
VRead :0.4V, VWrite :2V

Table 3: Benchmarks

Benchmark # of samples # of Feature # of Classes
poker 1000000 10 10
covtype 581012 54 7
adult 32561 14 2
iris 150 4 3
letter 20000 16 26

pendigits 7494 16 10
yeast 1484 8 10
mnist 60000 784 10
orl 400 10304 40

intrusion 125973 41 23

Schemes.We compared the following schemes with CPU and
GPU based training baselines.

• RFAcc. This is our basic RFAcc implementation as elaborated
in Section 4 with no encoding and node parallel optimiza-
tions, the pipeline execution is enabled by default.

• RFAcc-X. This is the implementation after adopting X-unary
encoding optimization, i.e., encoding loд2(X ) binary bits to
X bits (X can be 4, 8, 16, 32 or 64).

• RFAcc-P. This is the implementation that enables multiple
node training in one RFAcc chip.

• RFAcc-X-P. This is the implementation with all optimiza-
tions, i.e., X-unary encoding and multiple node training.

7 EVALUATION
7.1 RFAcc Characteristics
Table 4 lists the area and power consumption of a RFAcc chip using
64×128×128 3D ReRAM arrays. One chip can accommodate 32768
RCUs, which occupies 98% chip area. The overall chip area and
power consumption are comparable to a ReRAM based accelerator
for speeding up CNNs [26]. We use 32nm technology node, the
total chip area is 75mm2 with 30W power consumption.
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Table 4: RFAcc Characteristics

Units Number/Size Area (mm2) Power
RCU (32768 RCU on chip)

RComp Units 64×128×128 0.0015 0.89mW
MAC 128×64 0.0012 500uW

I/O buffers 1 1.15e-5 1.5nW
RCU Total 1 0.0027 0.9mW
RCUs 32768 86.8 29.3W
CTRL 1 0.14 31mW

Task buffer 1 0.128 61.2mW
ALU 1 0.599 161.492mW

Chip Total 1 87.75 30W

7.2 Performance
Figure 11 compares the speedup of different schemes. The results
were normalized to the CPU baseline. The Y-axis is drawn in log
scale. The GPU implementation can only outperform CPU for
benchmarks which have more than millions of samples, e.g., poker,
covtype, mnist and intrusion,. What’s more, GPU can only achieve
less than ten times speedups. For small datasets, the GPU imple-
mentation has less parallelizable potentials and thus becomes worse
than CPU implementation.

For all benchmarks, RFAcc based schemes achieve significant
speedup over CPU and GPU baselines. RFAcc, which does not
have encoding and node parallel optimizations, can achieve 482×
speedup on average. When node parallelism is enabled, the average
speedup boosts to 1615× (RFAcc-P in Figure 11). Because iris has
a very small number of samples and features, there is little oppor-
tunity for RFAcc to exploit the node parallelism. For orl, although
it has more than 10k features, the small number of samples limits
the parallelism (the 400 samples expands only 3 RCUs). Beacuse
64-unary encoding reduces the comparison round 8 times, which
is the most computational intensive step in RFAcc, RFAcc-64 im-
proves the performance on all benchmarks. On average RFAcc-64
has a speedup of 2558× over CPU baseline. When all optimizations
are enabled, RFAcc-64-P boosts the speedup to 8564×.
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Figure 11: Speedup normalized to CPU.

7.3 Energy Savings
We then evaluated the energy savings in RFAcc. Figure 12 summa-
rizes the energy savings over the GPU baseline. From the figure,
training using GPU consumes more energy than that using CPU —
it consumes about 2× energy on average. The smaller energy con-
sumption on poker and covtype is because of the shorter execution
time on GPU.

From Figure 12, RFAcc shows its superior energy-efficiency over
GPU and CPU. The energy advantage of RFAcc comes from its
PIM characteristic which avoids massive data movement, and the
vast parallelism of feature comparison which is the most time and
energy consuming operation in RF training. RFAcc and RFAcc-P
achieve 105 energy savings on average. With encoding, RFAcc-64
and RFAcc-64-P could further double the energy savings.

To better analyze the energy-efficiency of RFAcc, Figure 13 shows
the average power during an entire training of RF. Although poker
and covtype on GPU consume less energy than CPU, the power
of GPU is still as mush as twice higher than that of CPU. RFAcc’s
power is only less than 1.04% of that of GPU. RFAcc-64 slightly
increases power to 2.1% due to more cells are read simultaneously
during comparison. However, when node parellel optimization is
enabled, RFAcc-P and RFAcc-64-P consumes more power (5.2%)
due to more RCUs are activated at the same time.
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Figure 12: Energy savings over GPU.
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7.4 Unary Encoding Optimization
We then evaluated unary encoding optimization. Figure 14 and
Figure 15 report the speedup and energy savings, respectively, when
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adopting different unary encoding configurations. All experiments
are enabled with node parallel optimization at the same time.

Figure 14 shows that an X-unary encoding with larger X achieves
better performance as each value comparison takes fewer cycles
to finish. However, an X-unary encoding with larger X demands
more ReRAM space. For example, 4-unary encoding demand 2 times
space then no-encoding, while 64-unary encoding demands 8 times
space. etc. As X grows, the average speedups are 1615×, 3225×,
4685×, 6432×, 7342× and 8564×, respectively.

As shown in Figure 15, unary encoding reduces energy consump-
tion. This is because RFAcc with encoding needs significantly less
execution time. For example, the energy savings increases from 105

with no encoding to 2.6 × 105 with 64-unary encoding. However,
as shown by RFAcc and RFAcc-64 bars in Figure 13, the power of
encoding is actually higher than that of no-encoding scheme since
more cells are activated simultaneously.
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Figure 14: Comparing speedups with unary encoding.
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Figure 15: Comparing energy savings with unary encoding.

7.5 Impact of Array Size
Finally, we studied the impact when employing different dimen-
sions of 3D ReRAM arrays. The average speedup and energy saving
results are summarized in Figure 17 and Figure 18, respectively. All
the experiments are on RFAcc with no encoding and node paral-
lel optimizations. The figures show that 3D ReRAM array has an
important impact on the overall performance and energy savings.

From Figure 17, when adopting larger 3D ReRAM arrays (i.e.,
more layers and larger array sizes), RFAcc could achieve better
performance. To better understand this, Figure 16 compares the
access time (extracted from NVSIM) with different numbers of

layers and array sizes. More layers also increases energy saving (as
shown in Figure 18) thanks to the lower per-bit search power [19].
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Figure 16: The access latency for arrayswith different layers.
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Figure 17: Comparing speedups with different array size.
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8 CONCLUSION
In this paper, we proposed RFAcc, a 3D ReRAM based PIM accel-
erator, to speedup random forest training. The novel relational
comparator devised in this paper is the first in the literature. By
eliminating data movement and enabling concurrent value compar-
isons, RFAcc outperforms over both CPU and GPU implementations.
The three proposed optimizations further exploits the potential
parallelism to greatly improve training performance and achieve
significant energy consumption reductions over CPU and GPU
implementations.
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