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Abstract—Neural Networks (NNs) have recently gained pop-
ularity in a wide range of modern application domains due to
its superior inference accuracy. With growing problem size and
complexity, modern NNs, e.g.,, CNNs (Convolutional NNs) and
DNNs (Deep NNs), contain a large number of weights, which
require tremendous efforts not only to prepare representative
training datasets but also to train the network. There is an in-
creasing demand to protect the NN weight matrices, an emerging
Intellectual Property (IP) in NN field. Unfortunately, adopting
conventional encryption method faces significant performance
and energy consumption overheads.

In this paper, we propose AEP, a DianNao based NN acceler-
ator design for IP protection. AEP aggressively reduces DRAM
timing to generate a device dependent error mask, i.e., a set of
erroneous cells while the distribution of these cells are device
dependent due to process variations. AEP incorporates the error
mask in the NN training process so that the trained weights are
device dependent, which effectively defects IP piracy as exporting
the weights to other devices cannot produce satisfactory inference
accuracy. In addition, AEP speeds up NN inference and achieves
significant energy reduction due to the fact that main memory
dominates the energy consumption in DianNao accelerator. Our
evaluation results show that by injecting 0.1% to 5% memory
errors, AEP has negligible inference accuracy loss on the target
device while exhibiting unacceptable accuracy degradation on
other devices. In addition, AEP achieves an average of 72%
performance improvement and 44% energy reduction over the
DianNao baseline.

I. INTRODUCTION

Neural Networks (NNs) have recently gained popularity in
a wide range of modern application domains, e.g., computer
vision [12] and speech recognition [11]. NNs are machine
learning (ML) approaches that, by exploiting the significant
increase of computing power of modern computers, achieve
superior inference accuracy improvements over traditional ML
approaches. A typical NN contains a large number of layers
and their weight matrices, making it difficult to train and infer
twenty years ago. For example, the VGG-16 DNN is a 16-
layer image classification NN that has 138M parameters. Even
using four Nvidia Titan black GPUs, it still takes around two
to three weeks to train [27].

The intrinsic computation and memory intensity of NNs
has driven the development of hardware accelerators for high
performance and energy efficiency. For example, the DianNao
accelerator [3] achieves 118X performance speedup and 21X
energy reduction over an SIMD accelerator. Our paper is built
on top of the DianNao accelerator. Memory accesses remain
a major bottleneck for hardware NN accelerators, as shown in
[3].

With ML problems growing in both complexity and size,
it becomes increasingly challenging to design effective NNs
that achieve high inference accuracy, e.g., ImageNet has yearly
competition for large scale image recognition [12]. An NN is
composed of its layer structure as well as the corresponding

weight matrices in each layer. While the former is either
well known or hinted by the weight matrices, the latter is
more problem dependent — it requires not only the efforts
to prepare effective training datasets [9], sometimes including
sensitive and/or proprietary data, but also the efforts to train
the weights. Leaking the model may result in huge losses,
e.g., the object tracking and recognition NN of an autonomous
driving car may be pirated, which speeds up the development
of new systems from the competitors. Therefore, there is an
increasing demand to protect NN models, in particular, their
weight matrices.

For the NNs that are deployed at the client side, it is
challenging to design effective protection solutions. A simple
solution is to adopt XOM approach [20] to store encrypted
weights and decrypt them before use. Unfortunately, due to
extremely high memory bandwidth demand in NN acceler-
ators, e.g., 250GB/s in DianNao accelerator, an encryption
based approach not only requires the integration of expensive
encryption engines but also introduces significant encryption
and decryption latency and energy consumption overheads.

In this paper, we develop AEP, a novel error-bearing NN
training and inference approach that effectively protects the
NN model with low overheads. The following summarizes our
contributions.

« We propose to enable effective IP protection through device
dependent weight matrices. Adopting such weights achieves
high inference accuracy only on the target device. For this
purpose, we integrate a device dependent error mask in
the NN training phase and utilize batch normalization to
effectively mitigate the impact of errors during training. To
the best of our knowledge, we are the first to integrate IP
protection with weight training process.

o We propose to aggressively reduce DRAM timing to gen-
erate a device dependent error mask, i.e., we get a set
of erroneous cells while the distribution of these cells are
device dependent due to process variations. We propose a
table driven tRAS adjustment mechanism to defeat probing
attacks.

« We extensively evaluate the effectiveness of the AEP design.
Our results showed that, by injecting 0.1% to 5% memory
errors, AEP has negligible inference accuracy loss on the tar-
get devices but exhibiting unacceptable degradation on other
devices. In addition, by aggressively reducing tRAS timing,
AEP achieves, on average, 72% performance improvement
and 44% energy reduction over the DianNao baseline.

In the rest of the paper, we briefly discuss the background in
Section II. We then motivate the AEP design in Section III and
elaborate the details in Section IV. We present the experiment
methodology in Section V and discuss the results in Sec-



tion VI. Additional related work is discussed in Section VII.
We conclude the paper in Section VIIIL.
II. BACKGROUND

In this section, we discuss the background to facilitate
our design. We first discuss neural networks (NNs) and the
approximation in NN training. We then briefly introduce the
DianNao NN accelerator that our design is based on.

A. Neural Networks

A Neural Network (NN) is a layered structure containing
multiple layers. Each layer consists of multiple neurons while
each neuron computes

y=WX+b

where X is an input vector to the neuron; y is the a scalar
output value from the neuron. W is the weight matrix, and b is
a scalar value called bias. The outputs of one layer’s neurons
are the inputs of the following layer (except the last layer
whose output is the NN output). The outputs of one layer are
also referred to as its feature map. A feature map is a three
dimensional structure: W x H x D where W and H are its
width and height, and D is the number of the feature maps
(depth).

Convolutional layers. A convolutional layer is composed of
one or several three dimensional filters. The width and height
dimensions of the filter (K, K,) are usually the same and
are on the order of 10s. The ﬁfter’s depth dimension (K )
equals to that of the input feature maps (D;,,). Each filter slides
over the width and height dimensions (W;,,, H;,) of the input
feature maps with stride S. In each step, a filter produces a
single output neuron by computing the dot product with the
overlap eg input neurons. The produced output feature maps

are of dimension Wyt X Hpyt X Doyt

Wout = (Wm—Kz)/S—l—L
Houws = (Hin - Ky)/S + 17
Douwe = Nk7

where Ny is the number of filters in this layer.
In DNN, the filter in each step is private, i.e. the filter uses
a different set of values for each step when it slides along the

input feature maps.

Pooling layers. Pooling layers are usually used in an
interleaved fashion with convolutional layers to reduce the
feature map size. Similar to convolutional layers, it slides a
filter along the width and height dimensions of the input with
stride S. However, the filter is two dimensional (K, x K, x 1)
so that it applies the filter on each depth of the input separately.
Another igference is that there are no weights in pooling
layer’s filters, it only computes the max or average over the
covered input neurons. The dimension of output feature maps
are Wout X Hout X Dout:

Wout - (Wz _Kz)/S+17
Hous = (Hzn _Ky)/S+17
Douwt = Din.

Classifier layers. Classifier layers are usually located at the
end of NNs. The inputs and outputs in classifier layers are
regarded as one dimensional vectors. Each output neuron is
fully connected to all neurons in the input.

B. Training vs. Inference

An NN has two different computing phases: training and
inference. The training phase is to adjust the weights of each
layer to make the NN fit a specific function. Then the trained
weights are used in the inference phase to perform tasks,
such as image classification, speech recognition, etc. Figure la
shows the training process in an example NN that classifies
images. The black arrows show the forward propagation pass.
The first layer takes the image as input [ together with this

layer’s weights W to calculate the output neurons Ny, which
are then fed into the next layer. After the last layer computes
its neurons N4, the Loss function calculates the difference
between the network’s output and the ideal accelerator output
T. Then the loss goes back through the network layer by
layer in the backward propagation pass, denoted by the blue
arrows. Each layer takes the gradients of its output neurons as
input and produces the neuron’s gradients of previous layer.
At each step, the gradients of the current layer’s weights are
also produced. Finally, each layer’s weights are updated by
applying the equation W; = W, — n% (1 <i<4), where
7 is the learning rate. '

The inference phase uses the weights trained by the training
phase, and only executes the forward propagation pass to
classify an input image. The output of the last layer (IVy) is
the predicted label of the input image.

C. Training with Approximation

It has been proven that full precision computation (32/64-bit
floating point) is not necessary in NNs [10], [14]. Most hard-
ware accelerators use fixed point representation for weights
and/or neurons [3], [4]. Chen et al. [4] used different fixed
point widths to train and inference CNNs. They found 16-
bit fixed point is sufficient in inference phase, however, in
order to make the training phase converge, at least 32-bit fixed
point should be used in training. Courbariaux et al. [7] also
investigated different low precision operations in training deep
NNs. They can achieve negligible accuracy loss with lower
precision fixed point computations. Courbariaux et al. [8]
then proposed to use binary weights (1 bit) in inference. The
proposed training process in their work is shown in Figure 1b.
They keep two sets of weights, one is the full precision floating
point version W;, the other one is the low precision fixed point
weights W/. They first binarize the weights through function
F: , . )

W! = F(W;) = sign(W;), (1 <i <4)
and use W/ in the forward propagation pass. During the
backward propagation pass, they calculate the gradients w.r.t.
W/, but only update the full precision weights W;. In inference
phase, only W/ are used, so the floating point weights W; can
be discarded.
D. DianNao

DianNao [3] is an ASIC accelerator for speeding up NN
computing. Figure 2 shows the structure of the accelerator. It
is composed of one Neural Functional Unit (NFU) and three
SRAM buffers, i.e. input buffer (NBin), output buffer (NBout)
and synaptic buffer (SB). The SB is divided into 16 lanes.
There are 64 entries in NBin, NBout and each SB lane. One
entry can store 16 16-bit fixed point data. First the inputs of
a layer are loaded into NBin, and the corresponding weights
are loaded into SB. In each cycle, the 16 SB lanes provide
256 weights which are grouped into 16 16-weight groups
to NFU. At the same time, the 16 input neurons from one
NBin entry are broadcasted to each group. Every group of
16 neurons and 16 weights first multiply with each other in
NFU-1 stage, then the 16 products are summed up in NFU-2
stage into one partial result and stored into NBout. If there
is a partial sum of the same output neuron calculated in the
previous cycle (buffered in NBout), it is also summed up in
this stage. Once all the partial sums of an output neuron have
been added together, it goes through the NFU-3 stage to do a
nonlinearity function, e.g. sigmoid. Thus, 16 output neuron’s
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Fig. 1: The training process of an NN.
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Fig. 2: The DianNao architecture.

partial sum are computed in parallel. In order to support this
high parallelism, Chen et al. [3] uses a memory system that can
provide up to 250GB/s, which is significantly higher than the
capability of traditional DDR memories. In our experiments,
we employ HMB [13] as the baseline memory system that
provides 256GB/s bandwidth.

III. MOTIVATION

Security model. In this paper, we focus on the IP (intellec-
tual property) protection. The GPU-pool based server needs to
train an NN model (including its layer structure and the trained
weight matrices) and then deploy it to the DianNao-based
accelerator at the client side. After deployment, the client has
full control of device and may pirate and/or tamper with the
saved weights. A simple piracy would be directly copying the
weights to another device, treating the model as a black box.

The design goal of the paper is to protect the NN model,
in particular, its weight matrices, at the client side.

Encryption-based protection is too expensive. A naive
solution to protect NN models is to use encryption. To convoy
the weights to the accelerator without being exposed to the
third party during the process, we may adopt the XOM design
[20] and the privacy enhancement [33]. It works briefly as
follows. We first upgrade the accelerator with a small TCB
(trusted computing base) that contains a crypto-engine and
PKI (public key infrastructure) support, i.e., the private key is
kept secret while the public key is released to the end users
and servers. The server encrypts the weights using a session
key and then encrypts the session key with the public key of
the accelerator. Thus, only the target accelerator can decrypt
the session key and then decrypt the encrypted weights before
computation.

Unfortunately, this simple solution faces severe scalability
issues. Given CNNs and DNNs are increasingly adopted to
accomplish challenging tasks in various application domains,
their sizes, i.e., the number of weights in the network, grow
rapidly. For example, Le et al. [17] created an NN with 1
billion weight parameters, Catanzaro et al. [6] used an NN

that has 11 billion parameters. More recently, Ni et al. [23]
built an NN that contains over 15 billion parameters, which
requires more than 30GB if using 16-bit fixed point. It consists
of two convolutional layers and one classifier layer, which have
3GB, 18GB and 12GB weights, respectively.

An NN accelerator, due to its limited on-chip memory, needs
to load and decrypt the large amount of weights when starting
a new layer. Adopting HBM improves the maximal band-
width but not the decryption latency. For example, without
encrypting and decrypting the weights, the second layer of
the above NN finishes in 504pus using DianNao. However,
even we optimistically assume that the weights of the third
layer (i.e., 12GB) can be loaded in parallel with the execution
of the second layer, decrypting the weights with a fully-
unrolled, pipelined AES implementation needs 349ms [1].
Here we optimistically assume the AES decryption engine
consists of multiple copies such that it can match the peak
HBM bandwidth, i.e., 256GB/s. The weight decryption can
easily become the latency bottleneck of the whole system.
Therefore, the encrypted based scheme is less preferred for
NN model protection.

IV. DESIGN DETAILS

In this section, we first present an overview of the design
and then elaborate the details of each component in AEP.

A. Overview

Figure 3 illustrates the overview of our AEP design. To
deploy an NN to a device, e.g., a car manufacturer may
need to deploy an object tracking and recognition NN to its
autonomous driving car, the server, i.e., the car manufacturer in
the example, extracts a device dependent memory error mask
from each car that it manufactures, as @ in the figure. The
server then integrates the error mask of the target device in
the NN training process (using GPUs), which generates a set
of device dependent weights as part of the NN model, as @ in
the figure. Next, the NN model and its weights are sent to the
(DianNao-based) target device. The target device can employ
the NN model to conduct inference tasks and achieve desired
accuracy. However, while an attacker may port the weights
to another device, as @ in the figure, no matter if the pirate
device has memory errors or not, the inference accuracy is
below acceptable threshold.

With the focus on IP protection in this paper, we assume
the NN is deployed before the target devices are released to
clients. If there is a need to upgrade the NN after release, the
manufacturer needs to identify the corresponding error mask
from its error mask database, and then generate new device
dependent weights. There might be user privacy concerns in
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Fig. 3: An overview of AEP design.

this process, which demands PKI-based piracy enhancement
[33]. We leave it to the future work.

We next elaborate the design details.
B. Device Dependent Weight Matrices

Modern NNs exhibit significant error resilience. As we
discussed in Section 2.3, either replacing full precision weights
with 16-bit fixed point values, or reducing refresh frequency
to having a number of refresh errors [21], the NN inference
accuracy is often little affected.

However, to make the AEP design possible, we need to
solve a new problem that has not been studied before, i.e, is
it possible to train device dependent NN models that only
produce satisfactory inference results on target devices but
not on other devices? To the best of our knowledge, we are
the first to study this problem and our positive findings are

highly valuable for real deployment.

Our baseline training process uses two sets of weights — the
imprecise weights W, are used for forward computation, and
the precise weights Wf are used for weight update, which are
similar to W/ and W; in Figure 1(b) respectively. Assuming we
have a memory error mask M, a naive approach to train device
dependent weights is to apply the mask when we generate the
imprecise weights. That is,

We = f(Wy)=Wr&M
OLoss
Wro= Wit G (1)

W, is also the weights to be used in inference at the client
side.

We tested the effectiveness of this strategy on benchmark
CNN1 and summarized the inference accuracy during training
in Figure 4. The setting details can be found in Section 5.
The Normal line denotes the training in the baseline. After
five rounds, the training inference accuracy is close to 100%.
The withoutBN line denotes the strategy that simply apply
Equation (1) with a 5% error rate mask M to W; during
training. From the figure, we observe that this simple strategy
does not work — withoutBN cannot improve the inference
accuracy above 20%.
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Fig. 4: Training with and without batch normalization.
We then studied the training process and found that errors

bits, when appearing in the integer bits of the weights, intro-
duce large errors that cannot be corrected. For this reason, we

adopt batch normalization [8], a layer to mitigate the impact
of bit errors in weights. That is
T —p
y = ————
VoZ+e
where x is the output of previous convolutional or classifier
layer and input into the batchnorm layer. By substracting the
mean (1) and dividing standard deviation (o) from z, the input
is standard normalized (with zero mean and unit deviation).
v and [ are two learnable parameters like the weights in
convolutional and classifier layers. € is a small constant defined
prior the training.

We tested this new training process which adds batch
normalization to the NN. The withBN line in Figure 4 denotes
this strategy. As we can see from the figure, the loss of
inference accuracy is negligible (0.22%).

Device dependent weight matrices. Given that the error
mask is deeply integrated in each round of the training process,
we next check its dependency on devices.

After the training process, the server sends the weights W,
instead of the weights W, used in training, to the target device.
This is because the target device has the error mask M, it can
get W, when loading the weights (W) to DRAM.

For IP protection, the weights W are visible to attackers.
Without knowing the secrect mask M used in generating the
weights, the attackers have two options to abuse the weights:
one is to use W, directly for inference on other devices; the
other is to apply a different error mask Mx (the error mask
of the pirate device), i.e.,

Wy = Wy & My. 3)
TABLE I: Inference Accuracy on Different Devices
[ [ Target device [ Pirate device [ Error-free device |
[Coni [ 99.16% | 10.015% | 21.66% ]

For the same benchmark CNN1, Table I summarizes the
inference accuracy when adopting W, on different devices.
From the table, the trained weights Wy are applicable only
to the target device, and produces unacceptable inference
accuracies on either pirate or error-free devices.

v+ 8 2

C. Device Dependent Error Masks

The preceding section addresses the challenge of producing
device dependent weights based on device dependent error
masks. Next, we generate one such error mask as a proof of
concept. In practice, there are many different approaches to
generate device dependent error masks and signatures, e.g.,
those exploited in physical unclonable functions [29].

In this paper, our device dependent error masks are gen-
erated from DRAM restore errors. Given DRAM reads are
destructive operations that destroy the stored values, they need
to restore the values back to the cells after read. JEDEC
defines the timing that is required to reliably store the value
in DRAM cells — two timing parameters tRAS and tWR are
directly related for restore after read and for write operations,
respectively. We only adjust tRAS for proof of concept in this
paper.

The tRAS timing defined in JEDEC is often very conserva-
tive. Lee et al. [19] and Zhang et al. [32] proposed to safely
reduce tRAS (and tWR) to improve DRAM performance, i.e.,
without introducing DRAM errors. In this paper, we propose
to further reduce tRAS timing to introduce DRAM errors.
Due to process variations, the set of the DRAM errors and
their distribution are device dependent. Figure 5 presents the
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Fig. 5: Reducing tRAS aggressively introduces memory errors.

percentage of error bits for different tRAS values. we adopted
the same models as reported in [31], [32].

Choosing tRAS timing is closely coupled with the error
tolerance of the NN, i.e., the intrinsic layer structure and
problem difficulty. As shown in Figure 6, different NNs often
exhibit different error tolerance. For high performance NN
applications, we often have a small bound on how much loss
on inference accuracy can be tolerated. If we set the threshold
to be 1%, CNN2 and CNN3 can tolerate 0.1% bit errors, MLP S,
MLPM, and MLPL can tolerate up to 1% bit errors, while CNN1
can tolerate as high as 5% bit errors. For CNN1, we may reduce
tRAS from 35ns in the baseline to 11ns, as shown in Figure
5.

Recently, Song et al. [28] observed that different NNs
has different accuracy requirement, and for some applications
higher accuracy is not always preferable. Their observation
is orthogonal to our design — while we set a fixed threshold
(1%) in this paper, we will study NNs with different thresholds
in our future work.
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Flig 6: Different NNs have different error tolerance.
While DRAM restore errors manifest as empty cells with

no charge, a DRAM module may map cell state to O and 1
differently — some rows map no-charge cells as 1s while other
map them as 0Os. For this reason, the error mask consists of
two submasks M1 and MO0. They are used to identify the cells
that are stuck at 1s and Os, respectively.

The server took the post-fabrication test as shown in [19],
[32] to extract the masks. This is done before deployment.
Recent studies found a small number of cells show variable
retention time (VRT) [24], which may manifest as errors at
different times. In our study, AEP proactively introduces 0.1%
to 5% errors while VRT has a very low error rate, e.g., below
1076 [24]. The impact from VRT is negligible.

D. Securing The Error Mask At The Client Side

In AEP, the NN weights in AEP depend on the memory
error mask and thus it becomes important to prevent attackers
from extracting the mask at the client side. AEP defends the
memory error mask using two approaches.

The first approach is that we disable the read path before
release. The DianNao based accelerator and its DRAM module
are packaged together such that only the accelerator can fetch
data from DRAM to compute. A persistent attacker may probe
the error mask by loading his own NNs and correlating the
output to the inputs to detect possible error bits. It is much
more difficult and takes longer than memory march test [19].

Address Mask
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% Group Table
oooo| 001,
ooo1| 000,
oo10| 010,
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Fig. 7: Dynamic tRAS adjustment.

The second approach is to adopt a light weight error mask
selection mechanism as follows. We integrate a small table
in the memory controller, e.g., the table in Figure 7 has 16-
entries while each entry contains 3 bits. When accessing a
DRAM row, we map its row address to an entry in the table,
using the XOR of the address’ last 4 bits and a 4-bit mask.
The 3-bit entry content, e.g., ‘010,’=2 indicates how to adjust
the tRAS value at runtime. For example, if tRAS is set to
13ns globally, the memory controller effectively reduces the
tRAS timing for this row to 11ns if the mapped table entry
contains 2; and there is no adjustment if the entry contains 0.
Note that because NN has a regular memory access pattern
which is predetermined, the table look up can be done before
the access, thus it is not on the critical path.

The mask and the table requires 7 bytes. It is sensitive infor-
mation that is encrypted by the public key of the accelerator.
The accelerator decrypts the mask/table before execution. In
this way, even the attacker can faithfully probe the error mask
of the system, (S)He cannot determine the actual error mask
that is used in training.

The mask/table mechanism not only secures the error mask
but also provide a better control of the error rate in training.
There are about 0.02% and 0.1% memory errors when we
set tRAS to 16ns and 15ns, respectively. If an NN has
error tolerance at about 0.05%, choosing either tRAS=16 or
tRAS=15 may not give us the optimal configuration. Instead,
the server can set the tRAS to be 16ns globally and then set the
values of some entries in the above table to O while others to
1, which effectively set the tRAS for these rows to 16ns while
others being 15ns. The mix of these lines gives an average
error rate that is 0.05%.

V. METHODOLOGY

To evaluate the effectiveness of our proposed scheme, we
used the Theano [30] framework to explore the error tolerance
of different NNs. We tested three datasets with six NN
structures. MNIST [18] is a widely used gray scale image
dataset for handwritten digit recognition. SVHN [22] is a real
world house number recognition dataset obtained from Google
Street View images. Cifar10 [16] is a color image classification
dataset containing 10 different object classes. We built 3
different CNNs on MNIST, SVHN, and Cifar10. In addition,
we also built three different size multilayer perceptrons (MLP-
S/M/L). Table II lists the detailed network structures.

For performance evaluation, we developed a cycle accurate
simulator for the baseline DianNao and our proposed AEP
design. We modified DRAMsim2 [25] to simulate HBM
module according to [13]. The parameters of our simulator
are listed in Table III.

In our evaluation, we compared three schemes. )
« DianNao indicates the baseline accelerator proposed in [3].

It has no IP protection.



TABLE II: Datasets and Networks

Benchmark | Dataset | Neural Network
MLP S MNIST | 240-240-10
MLPM MNIST | 784-500-250-10
MLPL MNIST | 784-1500-1000-500-10
CNN1 MNIST | con5x20-pool2-conv5x50-pool2-500-10
CNN2 SVHN | conv5x32-pool3-conv4x64-pool3-1000-400-
10
CNN3 Cifar10 | conv4x32-pool3-conv4x32-pool3-conv3x64-
conv3x64-conv3x64-pool3-500-250-10
TABLE III: Simulator Setup
DianNao
NFU core 32nm 606MHz
NBin & NBout | 2KB SRAM
SB 32KB SRAM
Data Format 16 bit fixed point (I interger bit)
HBM
Size 32GB 256GB/s
Timing tRCD=12ns tWR=12ns tRP=12ns
35ns Baseline
tRAS = ¢ 24ns AL
11ns/13ns/15ns AEP

o AL indicates the scheme that reduces tRAS for performance
improvement [19]. AL is built on top of DianNao.

« AEP indicates the design proposed in this paper. While both
AEP and AL reduce tRAS, we compare them to study, in
addition to model protection, what additional performance
and energy benefits we may gain from aggressive reduction
of tRAS.

VI. RESULTS

A. IP Protection Effectiveness

We first evaluated the effectiveness of AEP in IP protection.
We trained the NNs using the device dependent error mask
from one device and tested the trained weight matrices on
error-free device as well as a device with different error mask.
Table IV summarizes our results from different benchmarks.
The results are normalized to the case that we train the weights
for error-free devices and perform the inference on error-free
devices.

TABLE IV: Inference Accuracy with Different Error Masks

[ Target Device | Pirate Device | Error-Free Device |

MLPS 99.77% 39.35% 81.5%
MLPM 99.38% 28.31% 71.43%
MLPL 99.02% 10.41% 24.53%
CNN1 99.16% 10.15% 21.66%
CNN2 99.71% 89.94% 97.6%
CNN3 100% 60.95% 97.77%

From the table, we observed that the trained weights exhibit
strong device dependency — while having negligible accuracy
loss on the target device, they show unacceptable accuracy
degradation on other devices.

B. Performance

In addition to IP protection, AEP improves inference per-
formance due to shortened memory access latency. Figure 8
compares the execution time of AL and AEP with the results
normalized to DianNao. From the figure, AEP achieves,
on average, 72% and 32% performance improvements over
DianNao and AL, respectively. The large improvement comes
mainly from tRAS reduction. Given all NN benchmark pro-
grams exhibit extreme memory access intensity, reducing
tRAS timing is very effective in improve inference perfor-
mance.
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Fig. 8: The performance comparison.

C. Energy Consumption

DRAM based memory is notorious for its refresh opera-
tions, which affect both performance and energy consumption.
It is reported that refresh takes 20% energy of the entire
memory system[2]. However, energy distribution is different
in neural network applications. Neural networks are highly
parallelizable, since the majority operations in neural networks
are matrix multiplications. So the memory is more frequently
read and written at all times. By reducing tRAS time in read
operations, both AL and AEP can improve energy consump-
tion significantly. However, because AEP uitlizes the intrinsic
high error tolerance in NNs, tRAS can be further reduced to
11ns/13ns/15ns for different NN structures (compared to 24ns
in AL). As a result, AEP’s energy consumption is only 56%
of the baseline, while AL’s energy consumption is 76% of the
baseline.
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Fig. 9: The energy consumption comparison.

D. Training Overhead

A big concern regarding training device dependent weight
matrices is its training overhead. Figure 10 compares different
training approaches. Normal indicates the traditional error-
free training process. Scratch indicates the error-bearing
training process, i.e., we integrate a device dependent mask
from the beginning. Cont inue indicates the optimized train-
ing process that we integrate device dependent mask after
Normal.

From the figure, Scratch and Normal have compara-
ble training speed — Scratch is slightly worse. However,
Continue has much faster training speed than the other two.
It converges in 24 epochs while the other two converge in 57
and 82 epochs, respectively.

The reason that we developed Continue is that, when
deploying an NN to multiple devices, we do not have to
train the NN from scratch for each error mask. Adopting
Continue can significantly reduce the training overhead at
the server side.

E. AEP Robustness

The last experiment that we performed is to study the
robustness of the design. In this paper, the error mask depends
on the memory errors with different tRAS timing parameters.
Due to process variations, the number of erroneous cells and
their distribution are device dependent. However, due to VRT
and chip voltage fluctuation at runtime, the real mask might
show a small deviation from the profiled mask.
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Figure 11 studies the inference accuracy degradation due
to the difference between real mask and profiled mask on the
target device. X-axis indicates the percentage of difference; y-
axis shows the accuracy normalized to the NNs that are trained
on error-free weights.
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Fig. 11: The AEP robustness.
From the figure, different NNs have different tolerance

levels on error mask deviation. For example, CNN3 can tolerate
up to 15% error mask deviation while MLPL shows significant
degradation with 5% difference. Recent study shows that the
runtime deviation is often small, comparing to the number of
proactively introduced errors by tRAS reduction. For example,
VRT error rates are in the order of 106 [24], which have
negligible impact on inference accuracy.
VII. RELATED WORK

Recently many NN accelerators were developed to speed up
NN inference and training phases. The Eyeriss [4] achitecture
focuses on minimizing data movement in CNNs to improve
energy efficiency. Neurocube [15] builds an NN accelerator
in HMC to achieve in-memory neuromorphic computing. By
exploiting ReRAM’s intrinsic ability to do MAC operations,
PRIME [5] and ISAAC [26] achieves significant throughput
improvements. At the client side, NN accelerators are deployed
mainly for achieving high inference performance. However,
none of the existing accelerators take the IP protection of
weights into account in their design.

Recent studies in ML reserach investigate the designs to
protect dataset during training phase. For example, Dowlin et
al. [9] proposed CryptoNets to use encrypted dataset during
training. By feeding into the NN with cypher text directly,
CryptoNets can improve throughout largely and still achieve
a high accuracy. AEP different from CryptoNets in that we
focus on protecting the trained weights deployed at the client
side.
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VIII. CONCLUSIONS

In this paper we proposed AEP, a DianNao based NN accel-
erator design for IP protection. By extracting device dependent
error masks, AEP trains device dependent weight matrices
such that adopting the weights can produce high inference
accuracy on target devices. This effectively defeats NN weight
piracy. In addition, by aggressively reducing tRAS timing,
AEP achieves, on average, 72% performance improvement and
449% energy reduction over the DianNao baseline.
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